Przygotowuję do matury rozszerzonej z chemii, konkursu kuratoryjnego i poprawki sierpniowej. Pomagam także doraźnie. Tłumaczę jasno i zrozumiale - w razie potrzeby od zera i po kilka razy na różne sposoby. Zadzwoń i porozmawiaj ze mną! Tel. 502 939 776. Michał Kulik.
Matura 2020 z chemii: arkusz i odpowiedzi W środę tegoroczni maturzyści pisali maturę z chemii na poziomie rozszerzonym. Dzień wcześniej odbyła się matura z biologii na poziomie rozszerzonym. Chemia, podobnie jak biologia, jest jednym z przedmiotów wymaganych podczas rekrutacji na studia przez wiele uczelni medycznych i przyrodniczych.
Podstawa programowa przedmiotu chemia4-letnie liceum ogólnokształcące oraz 5-letnie technikum⇑Zakres podstawowyTreści nauczania - wymagania szczegółowe⇑I. Atomy, cząsteczki i stechiometria stosuje pojęcie mola i liczby Avogadra;2) odczytuje w układzie okresowym masy atomowe pierwiastków i na ich podstawie oblicza masę molową związków chemicznych (nieorganicznych i organicznych) o podanych wzorach lub nazwach;3) dokonuje interpretacji jakościowej i ilościowej równania reakcji w ujęciu molowym, masowym i objętościowym (dla gazów);4) ustala wzór empiryczny i rzeczywisty związku chemicznego (nieorganicznego i organicznego) na podstawie jego składu (wyrażonego np. w procentach masowych) i masy molowej;5) wykonuje obliczenia dotyczące: liczby moli oraz mas substratów i produktów (stechiometria wzorów i równań chemicznych), objętości gazów w warunkach normalnych, po zmieszaniu substratów w stosunku stechiometrycznym.⇑II. Budowa atomu a układ okresowy stosuje pojęcia: powłoka, podpowłoka; pisze konfiguracje elektronowe atomów pierwiastków do Z=20 i jonów o podanym ładunku, uwzględniając przynależność elektronów do podpowłok (zapisy konfiguracji: pełne, skrócone);2) określa przynależność pierwiastków do bloków konfiguracyjnych: s, p układu okresowego na podstawie konfiguracji elektronowej;3) wskazuje związek między budową elektronową atomu a położeniem pierwiastka w układzie okresowym i jego właściwościami fizycznymi (np. promieniem atomowym, energią jonizacji) i chemicznymi.⇑III. Wiązania chemiczne. Oddziaływania określa rodzaj wiązania (jonowe, kowalencyjne (atomowe) niespolaryzowane, kowalencyjne (atomowe) spolaryzowane, donorowo-akceptorowe (koordynacyjne)) na podstawie elektroujemności oraz liczby elektronów walencyjnych atomów łączących się pierwiastków;2) ilustruje graficznie oraz opisuje powstawanie wiązań kowalencyjnych i jonowych; pisze wzory elektronowe typowych cząsteczek związków kowalencyjnych i jonów złożonych, z uwzględnieniem wiązań koordynacyjnych;3) określa typ wiązania (σ i π) w cząsteczkach związków nieorganicznych i organicznych;4) opisuje i przewiduje wpływ rodzaju wiązania (jonowe, kowalencyjne, metaliczne), oddziaływań międzycząsteczkowych (siły van der Waalsa, wiązania wodorowe) na właściwości fizyczne substancji nieorganicznych i organicznych; wskazuje te cząsteczki i fragmenty cząsteczek, które są polarne, oraz te, które są niepolarne;5) wnioskuje o rodzaju wiązania na podstawie obserwowanych właściwości substancji;6) porównuje właściwości fizyczne substancji tworzących kryształy jonowe, kowalencyjne, molekularne oraz metaliczne;7) wyjaśnia pojęcie alotropii pierwiastków; na podstawie znajomości budowy diamentu, grafitu, grafenu i fullerenów tłumaczy ich właściwości i zastosowania.⇑IV. Kinetyka i statyka chemiczna. Energetyka reakcji definiuje szybkość reakcji (jako zmianę stężenia reagenta w czasie);2) przewiduje wpływ: stężenia (ciśnienia) substratów, obecności katalizatora, stopnia rozdrobnienia substratów i temperatury na szybkość reakcji; projektuje i przeprowadza odpowiednie doświadczenia;3) stosuje pojęcia: egzoenergetyczny, endoenergetyczny, energia aktywacji do opisu efektów energetycznych przemian; zaznacza wartość energii aktywacji na schemacie ilustrującym zmiany energii w reakcji egzo- i endoenergetycznej;4) porównuje wartość energii aktywacji przebiegającej z udziałem i bez udziału katalizatora;5) opisuje różnice między układem otwartym, zamkniętym i izolowanym;6) stosuje pojęcie entalpii; interpretuje zapis ΔH 0; określa efekt energetyczny reakcji chemicznej na podstawie wartości entalpii.⇑V. rozróżnia układy homogeniczne i heterogeniczne; wymienia różnice we właściwościach roztworów właściwych, koloidów i zawiesin;2) wykonuje obliczenia związane z przygotowaniem, rozcieńczaniem i zatężaniem roztworów z zastosowaniem pojęć: stężenie procentowe i molowe oraz rozpuszczalność;3) projektuje i przeprowadza doświadczenie pozwalające otrzymać roztwór o zadanym stężeniu procentowym lub molowym;4) opisuje sposoby rozdzielenia roztworów właściwych (ciał stałych w cieczach, cieczy w cieczach) na składniki ( ekstrakcja, chromatografia);5) projektuje i przeprowadza doświadczenie pozwalające rozdzielić mieszaninę niejednorodną (ciał stałych w cieczach) na składniki.⇑VI. Reakcje w roztworach pisze równania dysocjacji elektrolitycznej związków nieorganicznych i organicznych z uwzględnieniem dysocjacji stopniowej;2) stosuje termin stopień dysocjacji dla ilościowego opisu zjawiska dysocjacji elektrolitycznej;3) interpretuje wartości pH w ujęciu jakościowym i ilościowym (np. związek między wartością pH a stężeniem jonów wodorowych);4) uzasadnia przyczynę kwasowego odczynu wodnych roztworów kwasów, zasadowego odczynu wodnych roztworów niektórych wodorotlenków (zasad) i amoniaku oraz odczynu niektórych wodnych roztworów soli; pisze odpowiednie równania reakcji;5) pisze równania reakcji: zobojętniania, wytrącania osadów i wybranych soli z wodą w formie jonowej pełnej i skróconej.⇑VII. Systematyka związków na podstawie wzoru sumarycznego, opisu budowy lub właściwości fizykochemicznych klasyfikuje dany związek chemiczny do: tlenków, wodorków, wodorotlenków, kwasów, soli (w tym wodoro- i hydroksosoli, hydratów);2) na podstawie wzoru sumarycznego związku nieorganicznego pisze jego nazwę, na podstawie nazwy pisze jego wzór sumaryczny;3) pisze równania reakcji otrzymywania tlenków pierwiastków o liczbach atomowych od 1 do 30 (synteza pierwiastków z tlenem, rozkład soli, np. CaCO3, i wodorotlenków, np. Cu(OH)2);4) opisuje typowe właściwości chemiczne tlenków pierwiastków o liczbach atomowych od 1 do 20, w tym zachowanie wobec wody, kwasów i zasad; pisze odpowiednie równania reakcji w formie cząsteczkowej i jonowej;5) klasyfikuje tlenki pierwiastków o liczbach atomowych od 1 do 20 ze względu na ich charakter chemiczny (kwasowy, zasadowy, amfoteryczny i obojętny); wnioskuje o charakterze chemicznym tlenku na podstawie wyników doświadczenia;6) klasyfikuje wodorki ze względu na ich charakter chemiczny (kwasowy, zasadowy i obojętny); wnioskuje o charakterze chemicznym wodorku na podstawie wyników doświadczenia; pisze odpowiednie równania reakcji potwierdzające charakter chemiczny wodorków; opisuje typowe właściwości chemiczne wodorków pierwiastków 17. grupy, w tym ich zachowanie wobec wody i zasad;7) projektuje i przeprowadza doświadczenia pozwalające otrzymać różnymi metodami: wodorotlenki, kwasy i sole; pisze odpowiednie równania reakcji;8) klasyfikuje wodorotlenki ze względu na ich charakter chemiczny (zasadowy, amfoteryczny); wnioskuje o charakterze chemicznym wodorotlenku na podstawie wyników doświadczenia; pisze odpowiednie równania reakcji potwierdzające charakter chemiczny wodorotlenków;9) opisuje typowe właściwości chemiczne kwasów, w tym zachowanie wobec metali, tlenków metali, wodorotlenków i soli kwasów o mniejszej mocy; projektuje i przeprowadza odpowiednie doświadczenia; pisze odpowiednie równania reakcji;10) klasyfikuje poznane kwasy ze względu na ich skład (kwasy tlenowe i beztlenowe), moc i właściwości utleniające;11) przewiduje przebieg reakcji soli z mocnymi kwasami (wypieranie kwasów słabszych, nietrwałych, lotnych) oraz soli z zasadami; pisze odpowiednie równania reakcji.⇑VIII. Reakcje utleniania i stosuje pojęcia: utleniacz, reduktor, utlenianie, redukcja;2) wskazuje utleniacz, reduktor, proces utleniania i redukcji w podanej reakcji;3) oblicza stopnie utlenienia pierwiastków w jonie i cząsteczce związku nieorganicznego i organicznego;4) stosuje zasady bilansu elektronowego - dobiera współczynniki stechiometryczne w schematach reakcji utleniania-redukcji (w formie cząsteczkowej);5) przewiduje przebieg reakcji utleniania-redukcji związków organicznych.⇑IX. stosuje pojęcia: półogniwo, anoda, katoda, ogniwo galwaniczne, klucz elektrolityczny, potencjał standardowy półogniwa, szereg elektrochemiczny, SEM;2) pisze oraz rysuje schemat ogniwa odwracalnego i nieodwracalnego;3) pisze równania reakcji zachodzących na elektrodach (na katodzie i anodzie) ogniwa galwanicznego o danym schemacie;4) oblicza SEM ogniwa galwanicznego na podstawie standardowych potencjałów półogniw, z których jest ono zbudowane;5) opisuje budowę, działanie i zastosowanie współczesnych źródeł prądu stałego (np. akumulator, bateria, ogniwo paliwowe);6) wyjaśnia przebieg korozji elektrochemicznej stali i żeliwa, pisze odpowiednie równania reakcji; opisuje sposoby ochrony metali przed korozją elektrochemiczną.⇑X. Metale, niemetale i ich opisuje podobieństwa we właściwościach pierwiastków w grupach układu okresowego i zmienność właściwości w okresach;2) opisuje podstawowe właściwości fizyczne metali i wyjaśnia je na podstawie znajomości natury wiązania metalicznego;3) opisuje właściwości fizyczne i chemiczne glinu; wyjaśnia, na czym polega pasywacja glinu; tłumaczy znaczenie tego zjawiska w zastosowaniu glinu w technice;4) pisze równania reakcji ilustrujące typowe właściwości chemiczne metali wobec: tlenu (dla Na, Mg, Ca, Al, Zn, Fe, Cu), wody (dla Na, K, Mg, Ca), kwasów nieutleniających (dla Na, K, Ca, Mg, Al, Zn, Fe, Mn, Cr), przewiduje i opisuje słownie przebieg reakcji rozcieńczonych i stężonych roztworów kwasów: azotowego(V) i siarkowego(VI) z Al, Fe, Cu, Ag;5) pisze równania reakcji ilustrujące typowe właściwości chemiczne niemetali, w tym między innymi równania reakcji: wodoru z niemetalami (Cl2, O2, N2, S), chloru, siarki z metalami (Na, K, Mg, Ca, Fe, Cu).⇑XI. Zastosowania wybranych związków bada i opisuje właściwości tlenku krzemu(IV); wymienia odmiany tlenku krzemu(IV) występujące w przyrodzie i wskazuje na ich zastosowania;2) opisuje proces produkcji szkła; jego rodzaje, właściwości i zastosowania;3) opisuje rodzaje skał wapiennych (wapień, marmur, kreda), ich właściwości i zastosowania; projektuje i przeprowadza doświadczenie, którego celem będzie odróżnienie skał wapiennych wśród innych skał i minerałów; pisze odpowiednie równania reakcji;4) opisuje mechanizm zjawiska krasowego i usuwania twardości przemijającej wody; pisze odpowiednie równania reakcji;5) pisze wzory hydratów i soli bezwodnych (CaSO4, (CaSO4)2·H2O i CaSO4·2H2O); podaje ich nazwy mineralogiczne; opisuje różnice we właściwościach hydratów i substancji bezwodnych; przewiduje zachowanie się hydratów podczas ogrzewania i weryfikuje swoje przewidywania doświadczalnie; wymienia zastosowania skał gipsowych; wyjaśnia proces twardnienia zaprawy gipsowej; pisze odpowiednie równanie reakcji;6) podaje przykłady nawozów naturalnych i sztucznych, uzasadnia potrzebę ich stosowania.⇑XII. Wstęp do chemii wyjaśnia i stosuje założenia teorii strukturalnej budowy związków organicznych;2) na podstawie wzoru sumarycznego, półstrukturalnego (grupowego), opisu budowy lub właściwości fizykochemicznych klasyfikuje dany związek chemiczny do: węglowodorów (nasyconych, nienasyconych, aromatycznych), związków jednofunkcyjnych (fluorowcopochodnych, alkoholi i fenoli, aldehydów i ketonów, kwasów karboksylowych, estrów, amin, amidów), związków wielofunkcyjnych (hydroksykwasów, aminokwasów, peptydów, białek, cukrów);3) stosuje pojęcia: homolog, szereg homologiczny, wzór ogólny, izomeria konstytucyjna (szkieletowa, położenia, grup funkcyjnych); rozpoznaje i klasyfikuje izomery;4) rysuje wzory strukturalne i półstrukturalne izomerów konstytucyjnych o podanym wzorze sumarycznym; wśród podanych wzorów węglowodorów i ich pochodnych wskazuje izomery konstytucyjne;5) przedstawia tendencje zmian właściwości fizycznych (np. temperatura topnienia, temperatura wrzenia, rozpuszczalność w wodzie) w szeregach homologicznych;6) wyjaśnia wpływ budowy cząsteczek (kształtu łańcucha węglowego oraz obecności podstawnika lub grupy funkcyjnej) na właściwości związków organicznych;7) klasyfikuje reakcje związków organicznych ze względu na typ procesu (addycja, eliminacja, substytucja, polimeryzacja, kondensacja).⇑XIII. podaje nazwy systematyczne węglowodorów (alkanu, alkenu i alkinu - do 10 atomów węgla w cząsteczce - oraz węglowodorów aromatycznych: benzenu, toluenu, ksylenów) na podstawie wzorów strukturalnych lub półstrukturalnych (grupowych); rysuje wzory węglowodorów na podstawie ich nazw;2) opisuje właściwości chemiczne alkanów na przykładzie reakcji: spalania, substytucji (podstawiania) atomu (lub atomów) wodoru przez atom (lub atomy) chloru przy udziale światła; pisze odpowiednie równania reakcji;3) opisuje właściwości chemiczne alkenów na przykładzie reakcji: spalania, addycji (przyłączania): H2, Cl2, HCl, H2O; polimeryzacji; przewiduje produkty reakcji przyłączenia cząsteczek niesymetrycznych do niesymetrycznych alkenów na podstawie reguły Markownikowa (produkty główne i uboczne); pisze odpowiednie równania reakcji;4) opisuje właściwości chemiczne alkinów na przykładzie reakcji: spalania, addycji (przyłączenia): H2, Cl2, HCl, H2O, trimeryzacji etynu; pisze odpowiednie równania reakcji;5) ustala wzór monomeru, z którego został otrzymany polimer o podanej strukturze; rysuje wzór polimeru powstającego z monomeru o podanym wzorze lub nazwie; pisze odpowiednie równania reakcji;6) klasyfikuje tworzywa sztuczne w zależności od ich właściwości (termoplasty i duroplasty); wskazuje na zagrożenia związane z gazami powstającymi w wyniku spalania się np. PVC;7) opisuje budowę cząsteczki benzenu z uwzględnieniem delokalizacji elektronów; wyjaśnia, dlaczego benzen, w przeciwieństwie do alkenów i alkinów, nie odbarwia wody bromowej ani wodnego roztworu manganianu(VII) potasu;8) opisuje przebieg destylacji ropy naftowej i pirolizy węgla kamiennego; wymienia nazwy produktów tych procesów i ich zastosowania;9) wyjaśnia pojęcie liczby oktanowej (LO) i podaje sposoby zwiększania LO benzyny; tłumaczy, na czym polega kraking oraz reforming i uzasadnia konieczność prowadzenia tych procesów w przemyśle.⇑XIV. Hydroksylowe pochodne węglowodorów - alkohole i na podstawie wzoru lub opisu klasyfikuje substancje do alkoholi lub fenoli;2) na podstawie wzoru strukturalnego lub półstrukturalnego (grupowego) podaje nazwy systematyczne alkoholi i fenoli; na podstawie nazwy systematycznej rysuje wzory strukturalne lub półstrukturalne (grupowe);3) opisuje właściwości chemiczne alkoholi na przykładzie reakcji: spalania, reakcji z HCl, zachowania wobec sodu, utlenienia do związków karbonylowych, eliminacji wody, reakcji z kwasami karboksylowymi; pisze odpowiednie równania reakcji;4) porównuje właściwości fizyczne i chemiczne alkoholi mono- i polihydroksylowych (etanolu (alkoholu etylowego), etano-1,2-diolu (glikolu etylenowego) i propano-1,2,3-triolu (glicerolu)); odróżnia alkohol monohydroksylowy od alkoholu polihydroksylowego; na podstawie obserwacji wyników doświadczenia klasyfikuje alkohol do mono- lub polihydroksylowych;5) opisuje właściwości chemiczne fenolu (benzenolu, hydroksybenzenu) na podstawie reakcji z: sodem, wodorotlenkiem sodu, kwasem azotowym(V); formułuje wniosek dotyczący kwasowego charakteru fenolu; pisze odpowiednie równania reakcji; na podstawie wyników doświadczenia klasyfikuje substancję do alkoholi lub fenoli;6) porównuje metody otrzymywania, właściwości fizyczne i chemiczne oraz zastosowania alkoholi i fenoli.⇑XV. Związki karbonylowe - aldehydy i opisuje podobieństwa i różnice w budowie cząsteczek aldehydów i ketonów (obecność grupy karbonylowej: aldehydowej lub ketonowej); na podstawie wzoru lub opisu klasyfikuje substancję do aldehydów lub ketonów;2) na podstawie wzoru strukturalnego lub półstrukturalnego (grupowego) podaje nazwy systematyczne aldehydów i ketonów; na podstawie nazwy systematycznej rysuje wzory strukturalne lub półstrukturalne (grupowe);3) pisze równania reakcji utleniania metanolu, etanolu, propan-1-olu, propan-2-olu;4) na podstawie wyników doświadczenia klasyfikuje substancję do aldehydów lub ketonów; pisze odpowiednie równania reakcji aldehydu z odczynnikiem Tollensa i odczynnikiem Trommera;5) porównuje metody otrzymywania, właściwości i zastosowania aldehydów i ketonów.⇑XVI. Kwasy wskazuje grupę karboksylową i resztę kwasową we wzorach kwasów karboksylowych (alifatycznych i aromatycznych); na podstawie wzoru strukturalnego lub półstrukturalnego (grupowego) podaje nazwy systematyczne (lub zwyczajowe) kwasów karboksylowych; na podstawie nazwy systematycznej (lub zwyczajowej) rysuje wzory strukturalne lub półstrukturalne (grupowe);2) pisze równania reakcji otrzymywania kwasów karboksylowych (np. z alkoholi lub z aldehydów);3) pisze równania dysocjacji elektrolitycznej rozpuszczalnych w wodzie kwasów karboksylowych i nazywa powstające w tych reakcjach jony;4) opisuje właściwości chemiczne kwasów karboksylowych na podstawie reakcji tworzenia: soli, estrów; pisze odpowiednie równania reakcji; przeprowadza doświadczenia pozwalające otrzymywać sole kwasów karboksylowych (w reakcjach kwasów z: metalami, tlenkami metali, wodorotlenkami metali i solami kwasów o mniejszej mocy);5) opisuje wpływ długości łańcucha węglowego na moc kwasów karboksylowych;6) projektuje i przeprowadza doświadczenie, którego wynik dowiedzie, że dany kwas organiczny jest kwasem słabszym np. od kwasu siarkowego(VI) i mocniejszym np. od kwasu węglowego; na podstawie wyników doświadczenia porównuje moc kwasów;7) projektuje i przeprowadza doświadczenie, którego wynik wykaże podobieństwo we właściwościach chemicznych kwasów nieorganicznych i kwasów karboksylowych;8) wyjaśnia przyczynę zasadowego odczynu wodnych roztworów niektórych soli, np. octanu sodu i mydła; pisze odpowiednie równania reakcji;9) wymienia zastosowania kwasów karboksylowych;10) opisuje budowę oraz występowanie i zastosowania hydroksykwasów (np. kwasu mlekowego i salicylowego).⇑XVII. Estry i opisuje strukturę cząsteczek estrów i wiązania estrowego;2) tworzy nazwy prostych estrów kwasów karboksylowych; rysuje wzory strukturalne i półstrukturalne (grupowe) estrów na podstawie ich nazwy;3) projektuje i przeprowadza reakcje estryfikacji; pisze równania reakcji alkoholi z kwasami karboksylowymi; wskazuje funkcję stężonego H2SO4;4) opisuje właściwości fizyczne estrów;5) wyjaśnia i porównuje przebieg hydrolizy estrów (np. octanu etylu) w środowisku kwasowym (reakcja z wodą w obecności kwasu siarkowego(VI)) oraz w środowisku zasadowym (reakcja z wodorotlenkiem sodu); pisze odpowiednie równania reakcji;6) opisuje budowę tłuszczów stałych i ciekłych (jako estrów glicerolu i długołańcuchowych kwasów tłuszczowych) oraz ich właściwości fizyczne i zastosowania;7) opisuje przebieg procesu utwardzania tłuszczów ciekłych; pisze odpowiednie równanie reakcji;8) opisuje proces zmydlania tłuszczów; pisze odpowiednie równania reakcji;9) wyjaśnia, w jaki sposób z glicerydów otrzymuje się kwasy tłuszczowe lub mydła; pisze odpowiednie równania reakcji;10) wyjaśnia, na czym polega proces usuwania brudu i bada wpływ twardości wody na powstawanie związków trudno rozpuszczalnych; zaznacza fragmenty hydrofobowe i hydrofilowe we wzorach cząsteczek substancji powierzchniowo czynnych;11) wymienia zastosowania estrów.⇑XVIII. Związki organiczne zawierające opisuje budowę i klasyfikacje amin;2) porównuje budowę amoniaku i amin; rysuje wzory elektronowe cząsteczek amoniaku i metyloaminy;3) wskazuje na różnice i podobieństwa w budowie metyloaminy i fenyloaminy (aniliny);4) porównuje i wyjaśnia przyczynę zasadowych właściwości amoniaku i amin; pisze odpowiednie równania reakcji;5) pisze równania reakcji metyloaminy z wodą i z kwasem solnym;6) pisze równanie reakcji fenyloaminy (aniliny) z kwasem solnym;7) pisze wzór ogólny a-aminokwasów, w postaci RCH(NH2)COOH;8) opisuje właściwości kwasowo-zasadowe aminokwasów oraz mechanizm powstawania jonów obojnaczych;9) pisze równania reakcji kondensacji dwóch cząsteczek aminokwasów (o podanych wzorach) i wskazuje wiązanie peptydowe w otrzymanym produkcie;10) tworzy wzory dipeptydów, powstających z podanych aminokwasów;11) opisuje przebieg hydrolizy peptydów, rysuje wzory półstrukturalne (grupowe) aminokwasów powstających w procesie hydrolizy peptydu o danej strukturze.⇑XIX. opisuje budowę białek (jako polimerów kondensacyjnych aminokwasów);2) opisuje strukturę drugorzędową białek (α- i β-) oraz wykazuje znaczenie wiązań wodorowych dla ich stabilizacji; tłumaczy znaczenie trzeciorzędowej struktury białek i wyjaśnia stabilizację tej struktury przez grupy R-, zawarte w resztach aminokwasów (wiązania jonowe, mostki disiarczkowe, wiązania wodorowe i oddziaływania van der Waalsa);3) wyjaśnia przyczynę denaturacji białek wywołanej oddziaływaniem na nie soli metali ciężkich i wysokiej temperatury; wymienia czynniki wywołujące wysalanie białek i wyjaśnia ten proces;4) projektuje i przeprowadza doświadczenie pozwalające na identyfikację białek (reakcja biuretowa i reakcja ksantoproteinowa).⇑XX. dokonuje podziału cukrów na proste i złożone, klasyfikuje cukry proste ze względu na liczbę atomów węgla w cząsteczce i grupę funkcyjną;2) wskazuje na pochodzenie cukrów prostych, zawartych np. w owocach (fotosynteza);3) zapisuje wzory łańcuchowe w projekcji Fischera glukozy i fruktozy; wykazuje, że cukry proste należą do polihydroksyaldehydów lub polihydroksyketonów;4) projektuje i przeprowadza doświadczenie, którego wynik potwierdzi właściwości redukujące glukozy;5) opisuje właściwości glukozy i fruktozy; wskazuje na ich podobieństwa i różnice;6) wskazuje wiązanie O-glikozydowe w cząsteczkach: sacharozy i maltozy;7) wyjaśnia, dlaczego maltoza ma właściwości redukujące, a sacharoza nie wykazuje właściwości redukujących;8) projektuje i przeprowadza doświadczenie pozwalające przekształcić sacharozę w cukry proste;9) porównuje budowę cząsteczek i właściwości skrobi i celulozy;10) pisze uproszczone równanie hydrolizy polisacharydów (skrobi i celulozy).⇑XXI. Chemia wokół klasyfikuje włókna na: celulozowe, białkowe, sztuczne i syntetyczne; wskazuje ich zastosowania; opisuje wady i zalety; uzasadnia potrzebę stosowania tych włókien;2) projektuje i przeprowadza doświadczenie pozwalające zidentyfikować włókna celulozowe, białkowe, sztuczne i syntetyczne;3) opisuje tworzenie się emulsji, ich zastosowania; analizuje skład kosmetyków (np. na podstawie etykiety kremu, balsamu, pasty do zębów itd.) i wyszukuje w dostępnych źródłach informacje na temat ich działania;4) wyjaśnia, na czym mogą polegać i od czego zależeć lecznicze i toksyczne właściwości substancji chemicznych (dawka, rozpuszczalność w wodzie, rozdrobnienie, sposób przenikania do organizmu), np. aspiryny, nikotyny, etanolu (alkoholu etylowego);5) wyszukuje informacje na temat działania składników popularnych leków (np. węgla aktywowanego, aspiryny, środków neutralizujących nadmiar kwasu w żołądku);6) wyszukuje informacje na temat składników zawartych w kawie, herbacie, mleku, wodzie mineralnej, napojach typu cola w aspekcie ich działania na organizm ludzki;7) opisuje procesy fermentacyjne zachodzące podczas wyrabiania ciasta i pieczenia chleba, produkcji wina, otrzymywania kwaśnego mleka, jogurtów, serów; pisze równania reakcji fermentacji alkoholowej, octowej i mlekowej;8) wyjaśnia przyczyny psucia się żywności i proponuje sposoby zapobiegania temu procesowi; przedstawia znaczenie i konsekwencje stosowania dodatków do żywności, w tym konserwantów;9) wskazuje na charakter chemiczny składników środków do mycia szkła, przetykania rur, czyszczenia metali i biżuterii w aspekcie zastosowań tych produktów; wyjaśnia, na czym polega proces usuwania zanieczyszczeń za pomocą tych środków oraz opisuje zasady bezpiecznego ich stosowania;10) podaje przykłady opakowań (celulozowych, szklanych, metalowych, z tworzyw sztucznych) stosowanych w życiu codziennym; opisuje ich wady i zalety;11) uzasadnia potrzebę zagospodarowania odpadów pochodzących z różnych opakowań.⇑XXII. Elementy ochrony tłumaczy, na czym polegają sorpcyjne właściwości gleby w uprawie roślin i ochronie środowiska; opisuje wpływ pH gleby na wzrost wybranych roślin; planuje i przeprowadza badanie kwasowości gleby oraz badanie właściwości sorpcyjnych gleby;2) wymienia podstawowe rodzaje zanieczyszczeń powietrza, wody i gleby (np. metale ciężkie, węglowodory, produkty spalania paliw, freony, pyły, azotany(V), fosforany(V) (ortofosforany(V)), ich źródła oraz wpływ na stan środowiska naturalnego; opisuje rodzaje smogu oraz mechanizmy jego powstawania;3) proponuje sposoby ochrony środowiska naturalnego przed zanieczyszczeniem i degradacją zgodnie z zasadami zrównoważonego rozwoju;4) wskazuje potrzebę rozwoju gałęzi przemysłu chemicznego (leki, źródła energii, materiały); wskazuje problemy i zagrożenia wynikające z niewłaściwego planowania i prowadzenia procesów chemicznych; uzasadnia konieczność projektowania i wdrażania procesów chemicznych umożliwiających ograniczenie lub wyeliminowanie używania albo wytwarzania niebezpiecznych substancji; wyjaśnia zasady tzw. zielonej chemii;5) wskazuje powszechność stosowania środków ochrony roślin oraz zagrożenia dla zdrowia ludzi i środowiska wynikające z nierozważnego ich użycia.⇑Zakres rozszerzonyTreści nauczania - wymagania szczegółowe⇑I. Atomy, cząsteczki i stechiometria stosuje pojęcia: nuklid, izotop, mol i liczba Avogadra;2) odczytuje w układzie okresowym masy atomowe pierwiastków i na ich podstawie oblicza masę molową związków chemicznych (nieorganicznych i organicznych) o podanych wzorach lub nazwach;3) oblicza masę atomową pierwiastka na podstawie jego składu izotopowego i mas atomowych izotopów; ustala skład izotopowy pierwiastka na podstawie jego masy atomowej i mas atomowych izotopów (dla pierwiastków występujących w przyrodzie w postaci mieszaniny dwóch naturalnych izotopów);4) oblicza zmianę masy promieniotwórczego nuklidu w określonym czasie, znając jego okres półtrwania; pisze równania naturalnych przemian promieniotwórczych (α, β¯)oraz sztucznych reakcji jądrowych;5) ustala wzór empiryczny i rzeczywisty związku chemicznego (nieorganicznego i organicznego) na podstawie jego składu (wyrażonego np. w procentach masowych) i masy molowej;6) dokonuje interpretacji jakościowej i ilościowej równania reakcji w ujęciu molowym, masowym i objętościowym (dla gazów);7) wykonuje obliczenia, z uwzględnieniem wydajności reakcji, dotyczące: liczby moli oraz mas substratów i produktów (stechiometria wzorów i równań chemicznych), objętości gazów w warunkach normalnych, po zmieszaniu substratów w stosunku stechiometrycznym i niestechiometrycznym;8) stosuje do obliczeń równanie Clapeyrona.⇑II. Budowa na podstawie dualnej natury elektronu wyjaśnia kwantowo-mechaniczny model budowy atomu;2) interpretuje wartości liczb kwantowych; opisuje stan elektronu w atomie za pomocą liczb kwantowych; stosuje pojęcia: powłoka, podpowłoka, stan orbitalny, spin elektronu;3) stosuje zasady rozmieszczania elektronów na orbitalach (zakaz Pauliego i regułę Hunda) w atomach pierwiastków wieloelektronowych;4) pisze konfiguracje elektronowe atomów pierwiastków do Z=38 oraz ich jonów o podanym ładunku, uwzględniając przynależność elektronów do podpowłok (zapisy konfiguracji: pełne, skrócone i schematy klatkowe);5) określa przynależność pierwiastków do bloków konfiguracyjnych: s, p i d układu okresowego na podstawie konfiguracji elektronowej; wskazuje związek między budową elektronową atomu a położeniem pierwiastka w układzie okresowym i jego właściwościami fizycznymi (np. promieniem atomowym, energią jonizacji) i chemicznymi.⇑III. Wiązania chemiczne. Oddziaływania określa rodzaj wiązania (jonowe, kowalencyjne (atomowe) niespolaryzowane, kowalencyjne (atomowe) spolaryzowane, donorowo-akceptorowe (koordynacyjne)) na podstawie elektroujemności oraz liczby elektronów walencyjnych atomów łączących się pierwiastków;2) ilustruje graficznie oraz opisuje powstawanie wiązań kowalencyjnych i jonowych; pisze wzory elektronowe typowych cząsteczek związków kowalencyjnych i jonów złożonych, z uwzględnieniem wiązań koordynacyjnych;3) wyjaśnia tworzenie orbitali zhybrydyzowanych zgodnie z modelem hybrydyzacji, opisuje ich wzajemne ułożenie w przestrzeni;4) rozpoznaje typ hybrydyzacji (sp, sp2, sp3) orbitali walencyjnych atomu centralnego w cząsteczkach związków nieorganicznych i organicznych; przewiduje budowę przestrzenną drobin metodą VSEPR; określa kształt drobin (struktura diagonalna, trygonalna, tetraedryczna, piramidalna, V-kształtna);5) określa typ wiązania (σ i π) w cząsteczkach związków nieorganicznych i organicznych; opisuje powstawanie orbitali molekularnych;6) opisuje i przewiduje wpływ rodzaju wiązania (jonowe, kowalencyjne, metaliczne), oddziaływań międzycząsteczkowych (siły van der Waalsa, wiązania wodorowe) oraz kształtu drobin na właściwości fizyczne substancji nieorganicznych i organicznych; wskazuje te cząsteczki i fragmenty cząsteczek, które są polarne, oraz te, które są niepolarne;7) wnioskuje o rodzaju wiązania na podstawie obserwowanych właściwości substancji;8) porównuje właściwości fizyczne substancji tworzących kryształy jonowe, kowalencyjne, molekularne oraz metaliczne;9) wyjaśnia pojęcie alotropii pierwiastków; na podstawie znajomości budowy diamentu, grafitu, grafenu i fullerenów tłumaczy ich właściwości i zastosowania.⇑IV. Kinetyka i statyka chemiczna. Energetyka reakcji definiuje i oblicza szybkość reakcji (jako zmianę stężenia reagenta w czasie);2) przewiduje wpływ: stężenia (ciśnienia) substratów, obecności katalizatora, stopnia rozdrobnienia substratów i temperatury na szybkość reakcji; projektuje i przeprowadza odpowiednie doświadczenia;3) na podstawie równania kinetycznego określa rząd reakcji względem każdego substratu; na podstawie danych doświadczalnych ilustrujących związek między stężeniem substratu a szybkością reakcji określa rząd reakcji i pisze równanie kinetyczne;4) szkicuje wykres zmian szybkości reakcji w funkcji czasu oraz wykres zmian stężeń reagentów reakcji pierwszego rzędu w czasie, wyznacza okres półtrwania;5) stosuje pojęcia: egzoenergetyczny, endoenergetyczny, energia aktywacji do opisu efektów energetycznych przemian; zaznacza wartość energii aktywacji na schemacie ilustrującym zmiany energii w reakcji egzo- i endoenergetycznej;6) porównuje wartość energii aktywacji przebiegającej z udziałem i bez udziału katalizatora; wyjaśnia działanie katalizatora na poziomie molekularnym;7) wykazuje się znajomością i rozumieniem pojęć: stan równowagi dynamicznej i stała równowagi; pisze wyrażenie na stałą równowagi danej reakcji;8) oblicza wartość stałej równowagi reakcji odwracalnej; oblicza stężenia równowagowe albo stężenia początkowe reagentów;9) wymienia czynniki, które wpływają na stan równowagi reakcji; wyjaśnia, dlaczego obecność katalizatora nie wpływa na wydajność przemiany; stosuje regułę Le Chateliera-Brauna (regułę przekory) do jakościowego określenia wpływu zmian temperatury, stężenia reagentów i ciśnienia na układ pozostający w stanie równowagi dynamicznej;10) opisuje różnice między układem otwartym, zamkniętym i izolowanym;11) stosuje pojęcie standardowej entalpii przemiany; interpretuje zapis ΔH 0; określa efekt energetyczny reakcji chemicznej na podstawie wartości entalpii;12) stosuje prawo Hessa do obliczeń efektów energetycznych przemian na podstawie wartości standardowych entalpii tworzenia i standardowych entalpii spalania.⇑V. rozróżnia układy homogeniczne i heterogeniczne; wymienia różnice we właściwościach roztworów właściwych, koloidów i zawiesin;2) wykonuje obliczenia związane z przygotowaniem, rozcieńczaniem i zatężaniem roztworów z zastosowaniem pojęć: stężenie procentowe lub molowe oraz rozpuszczalność;3) projektuje i przeprowadza doświadczenie pozwalające otrzymać roztwór o określonym stężeniu procentowym lub molowym;4) opisuje sposoby rozdzielenia roztworów właściwych (ciał stałych w cieczach, cieczy w cieczach) na składniki ( ekstrakcja, chromatografia, elektroforeza);5) projektuje i przeprowadza doświadczenie pozwalające rozdzielić mieszaninę niejednorodną (ciał stałych w cieczach) na składniki.⇑VI. Reakcje w roztworach pisze równania dysocjacji elektrolitycznej związków nieorganicznych i organicznych z uwzględnieniem dysocjacji stopniowej;2) stosuje termin stopień dysocjacji dla ilościowego opisu zjawiska dysocjacji elektrolitycznej;3) interpretuje wartości pKw, pH, Ka, Kb, Ks;4) wykonuje obliczenia z zastosowaniem pojęć: stała dysocjacji, stopień dysocjacji, pH, iloczyn jonowy wody, iloczyn rozpuszczalności; stosuje do obliczeń prawo rozcieńczeń Ostwalda;5) porównuje moc elektrolitów na podstawie wartości ich stałych dysocjacji;6) przewiduje odczyn roztworu po reakcji substancji zmieszanych w ilościach stechiometrycznych i niestechiometrycznych;7) klasyfikuje substancje jako kwasy lub zasady zgodnie z teorią Bronsteda-Lowry'ego; wskazuje sprzężone pary kwas - zasada;8) uzasadnia przyczynę kwasowego odczynu wodnych roztworów kwasów, zasadowego odczynu wodnych roztworów niektórych wodorotlenków (zasad) i amoniaku oraz odczynu niektórych wodnych roztworów soli zgodnie z teorią Bronsteda-Lowry'ego; pisze odpowiednie równania reakcji;9) pisze równania reakcji: zobojętniania, wytrącania osadów i wybranych soli z wodą w formie jonowej pełnej i skróconej.⇑VII. Systematyka związków na podstawie wzoru sumarycznego, opisu budowy lub właściwości fizykochemicznych klasyfikuje dany związek chemiczny do: tlenków, wodorków, wodorotlenków, kwasów, soli (w tym wodoro- i hydroksosoli, hydratów);2) na podstawie wzoru sumarycznego związku nieorganicznego pisze jego nazwę, na podstawie nazwy pisze jego wzór sumaryczny;3) pisze równania reakcji otrzymywania tlenków pierwiastków o liczbach atomowych od 1 do 30 (synteza pierwiastków z tlenem, rozkład soli, np. CaCO3, i wodorotlenków, np. Cu(OH)2);4) opisuje typowe właściwości chemiczne tlenków pierwiastków o liczbach atomowych od 1 do 20 oraz Cr, Cu, Zn, Mn i Fe, w tym zachowanie wobec wody, kwasów i zasad; pisze odpowiednie równania reakcji w formie cząsteczkowej i jonowej;5) klasyfikuje tlenki ze względu na ich charakter chemiczny (kwasowy, zasadowy, amfoteryczny i obojętny); projektuje i przeprowadza doświadczenie, którego przebieg pozwoli wykazać charakter chemiczny tlenku; wnioskuje o charakterze chemicznym tlenku na podstawie wyników doświadczenia;6) klasyfikuje wodorki ze względu na ich charakter chemiczny (kwasowy, zasadowy i obojętny); projektuje i przeprowadza doświadczenie, którego przebieg pozwoli wykazać charakter chemiczny wodorku; wnioskuje o charakterze chemicznym wodorku na podstawie wyników doświadczenia; pisze odpowiednie równania reakcji potwierdzające charakter chemiczny wodorków; opisuje typowe właściwości chemiczne wodorków pierwiastków 17. grupy, w tym ich zachowanie wobec wody i zasad;7) projektuje i przeprowadza doświadczenia pozwalające otrzymać różnymi metodami: wodorotlenki, kwasy i sole; pisze odpowiednie równania reakcji;8) klasyfikuje wodorotlenki ze względu na ich charakter chemiczny (zasadowy, amfoteryczny); projektuje i przeprowadza doświadczenie, którego przebieg pozwoli wykazać charakter chemiczny wodorotlenku; wnioskuje o charakterze chemicznym wodorotlenku na podstawie wyników doświadczenia; pisze odpowiednie równania reakcji potwierdzające charakter chemiczny wodorotlenków (w tym równania reakcji otrzymywania hydroksokompleksów);9) opisuje typowe właściwości chemiczne kwasów, w tym zachowanie wobec metali, tlenków metali, wodorotlenków i soli kwasów o mniejszej mocy; projektuje i przeprowadza odpowiednie doświadczenia; pisze odpowiednie równania reakcji;10) klasyfikuje poznane kwasy ze względu na ich skład (kwasy tlenowe i beztlenowe), moc i właściwości utleniające;11) przedstawia i uzasadnia zmiany mocy kwasów fluorowcowodorowych;12) opisuje wpływ elektroujemności i stopnia utlenienia atomu centralnego na moc kwasów tlenowych;13) przewiduje przebieg reakcji soli z mocnymi kwasami (wypieranie kwasów słabszych, nietrwałych, lotnych) oraz soli z zasadami; pisze odpowiednie równania reakcji.⇑VIII. Reakcje utleniania i stosuje pojęcia: stopień utlenienia, utleniacz, reduktor, utlenianie, redukcja;2) wskazuje utleniacz, reduktor, proces utleniania i redukcji w podanej reakcji;3) na podstawie konfiguracji elektronowej atomów przewiduje typowe stopnie utlenienia pierwiastków;4) oblicza stopnie utlenienia pierwiastków w jonie i cząsteczce związku nieorganicznego i organicznego;5) stosuje zasady bilansu elektronowo-jonowego - dobiera współczynniki stechiometryczne w schematach reakcji utleniania-redukcji (w formie cząsteczkowej i jonowej);6) przewiduje kierunek przebiegu reakcji utleniania-redukcji na podstawie wartości potencjałów standardowych półogniw; pisze odpowiednie równania reakcji;7) przewiduje przebieg reakcji utleniania-redukcji związków organicznych.⇑IX. Elektrochemia. Ogniwa i stosuje pojęcia: półogniwo, anoda, katoda, ogniwo galwaniczne, klucz elektrolityczny; potencjał standardowy półogniwa, szereg elektrochemiczny, SEM;2) pisze oraz rysuje schemat ogniwa odwracalnego i nieodwracalnego;3) pisze równania reakcji zachodzące na elektrodach (na katodzie i anodzie) ogniwa galwanicznego o danym schemacie; projektuje ogniwo, w którym zachodzi dana reakcja chemiczna; pisze schemat tego ogniwa;4) oblicza SEM ogniwa galwanicznego na podstawie standardowych potencjałów półogniw, z których jest ono zbudowane;5) wyjaśnia przebieg korozji elektrochemicznej stali i żeliwa; pisze odpowiednie równania reakcji; opisuje sposoby ochrony metali przed korozją elektrochemiczną;6) stosuje pojęcia: elektroda, elektrolizer, elektroliza, potencjał rozkładowy;7) przewiduje produkty elektrolizy stopionych tlenków, soli, wodorotlenków, wodnych roztworów kwasów i soli oraz zasad;8) pisze równania dysocjacji termicznej; pisze odpowiednie równania reakcji elektrodowych zachodzących w trakcie elektrolizy;9) projektuje i przeprowadza doświadczenia, w których drogą elektrolizy otrzyma np. wodór, tlen, chlor, miedź;10) opisuje budowę, działanie i zastosowanie współczesnych źródeł prądu stałego (np. akumulator, bateria, ogniwo paliwowe).⇑X. Metale, niemetale i ich opisuje podobieństwa we właściwościach pierwiastków w grupach układu okresowego i zmienność właściwości w okresach;2) opisuje podstawowe właściwości fizyczne metali i wyjaśnia je na podstawie znajomości natury wiązania metalicznego;3) analizuje i porównuje właściwości fizyczne i chemiczne metali grup 1. i 2.;4) opisuje właściwości fizyczne i chemiczne glinu; wyjaśnia, na czym polega pasywacja glinu; tłumaczy znaczenie tego zjawiska w zastosowaniu glinu w technice;5) pisze równania reakcji ilustrujące typowe właściwości chemiczne metali wobec: tlenu (dla Na, Mg, Ca, Al, Zn, Fe, Cu), wody (dla Na, K, Mg, Ca), kwasów nieutleniających (dla Na, K, Ca, Mg, Al, Zn, Fe, Mn, Cr), rozcieńczonego i stężonego roztworu kwasu azotowego(V) oraz stężonego roztworu kwasu siarkowego(VI) (dla Al, Fe, Cu, Ag);6) projektuje i przeprowadza doświadczenie, którego wynik pozwoli porównać aktywność chemiczną metali; pisze odpowiednie równania reakcji;7) przewiduje produkty redukcji jonów manganianowych(VII) w zależności od środowiska, a także jonów dichromianowych(VI) w środowisku kwasowym; pisze odpowiednie równania reakcji;8) projektuje i przeprowadza doświadczenia, w wyniku których można otrzymać wodór (reakcje aktywnych metali z wodą lub niektórych metali z niektórymi kwasami), pisze odpowiednie równania reakcji;9) projektuje i przeprowadza doświadczenia pozwalające otrzymać w laboratorium: tlen (np. reakcja rozkładu H2O2 lub KMnO4), chlor (np. reakcja HCl z MnO2 lub z KMnO4); pisze odpowiednie równania reakcji;10) pisze równania reakcji ilustrujące typowe właściwości chemiczne niemetali, w tym między innymi równania reakcji: wodoru z niemetalami (Ch, Br2, O2, N2, S), chloru, bromu i siarki z metalami (Na, K, Mg, Ca, Fe, Cu); chloru z wodą;11) analizuje i porównuje właściwości fizyczne i chemiczne fluorowców;12) projektuje i przeprowadza doświadczenie, którego przebieg wykaże, że np. brom jest pierwiastkiem bardziej aktywnym niż jod, a mniej aktywnym niż chlor; pisze odpowiednie równania reakcji.⇑XI. Zastosowania wybranych związków bada i opisuje właściwości tlenku krzemu(IV); wymienia odmiany tlenku krzemu(IV) występujące w przyrodzie i wymienia ich zastosowania;2) opisuje proces produkcji szkła; jego rodzaje, właściwości i zastosowania;3) opisuje rodzaje skał wapiennych (wapień, marmur, kreda), ich właściwości i zastosowania; projektuje i przeprowadza doświadczenie, którego celem będzie odróżnienie skał wapiennych od innych skał i minerałów; pisze odpowiednie równania reakcji;4) opisuje mechanizm zjawiska krasowego i usuwania twardości przemijającej wody; pisze odpowiednie równania reakcji;5) pisze wzory hydratów i soli bezwodnych (CaSO4, (CaSO4)2·H2O i CaSO4·2H2O); podaje ich nazwy mineralogiczne; opisuje różnice we właściwościach hydratów i substancji bezwodnych; przewiduje zachowanie się hydratów podczas ogrzewania i weryfikuje swoje przewidywania doświadczalnie; wymienia zastosowania skał gipsowych; wyjaśnia proces twardnienia zaprawy gipsowej; pisze odpowiednie równanie reakcji;6) podaje przykłady nawozów naturalnych i sztucznych, uzasadnia potrzebę ich stosowania.⇑XII. Wstęp do chemii wyjaśnia i stosuje założenia teorii strukturalnej budowy związków organicznych;2) na podstawie wzoru sumarycznego, półstrukturalnego (grupowego), opisu budowy lub właściwości fizykochemicznych klasyfikuje dany związek chemiczny do: węglowodorów (nasyconych, nienasyconych, aromatycznych), związków jednofunkcyjnych (fluorowcopochodnych, alkoholi, fenoli, aldehydów, ketonów, kwasów karboksylowych, estrów, amin, amidów), związków wielofunkcyjnych (hydroksykwasów, aminokwasów, peptydów, białek, cukrów);3) stosuje pojęcia: homolog, szereg homologiczny, wzór ogólny, rzędowość w związkach organicznych, izomeria konstytucyjna (szkieletowa, położenia, grup funkcyjnych), stereoizomeria (izomeria geometryczna, izomeria optyczna); rozpoznaje i klasyfikuje izomery;4) rysuje wzory strukturalne i półstrukturalne (grupowe) izomerów konstytucyjnych o podanym wzorze sumarycznym; wśród podanych wzorów węglowodorów i ich pochodnych wskazuje izomery konstytucyjne;5) wyjaśnia zjawisko izomerii geometrycznej (cis-trans); uzasadnia warunki wystąpienia izomerii geometrycznej w cząsteczce związku o podanej nazwie lub o podanym wzorze strukturalnym (lub półstrukturalnym); rysuje wzory izomerów geometrycznych;6) wyjaśnia zjawisko izomerii optycznej; wskazuje centrum stereogeniczne (asymetryczny atom węgla); rysuje wzory w projekcji Fischera izomerów optycznych: enancjomerów i diastereoizomerów; uzasadnia warunki wystąpienia izomerii optycznej w cząsteczce związku o podanej nazwie lub o podanym wzorze; ocenia, czy cząsteczka o podanym wzorze stereochemicznym jest chiralna;7) przedstawia tendencje zmian właściwości fizycznych (np. temperatura topnienia, temperatura wrzenia, rozpuszczalność w wodzie) w szeregach homologicznych;8) wyjaśnia wpływ budowy cząsteczek (kształtu łańcucha węglowego oraz obecności podstawnika lub grupy funkcyjnej) na właściwości związków organicznych; porównuje właściwości różnych izomerów konstytucyjnych; porównuje właściwości stereoizomerów (enancjomerów i diastereoizomerów);9) klasyfikuje reakcje związków organicznych ze względu na typ procesu (addycja, eliminacja, substytucja, polimeryzacja, kondensacja) i mechanizm reakcji (elektrofilowy, nukleofilowy, rodnikowy); wyjaśnia mechanizmy reakcji; pisze odpowiednie równania reakcji.⇑XIII. podaje nazwy systematyczne węglowodorów (alkanu, alkenu i alkinu - do 10 atomów węgla w cząsteczce - oraz węglowodorów cyklicznych i aromatycznych) na podstawie wzorów strukturalnych, półstrukturalnych (grupowych) lub uproszczonych; rysuje wzory węglowodorów na podstawie ich nazw; podaje nazwy systematyczne fluorowcopochodnych węglowodorów na podstawie wzorów strukturalnych lub półstrukturalnych (grupowych); rysuje ich wzory strukturalne i półstrukturalne (grupowe) na podstawie nazw systematycznych;2) ustala rzędowość atomów węgla w cząsteczce węglowodoru;3) opisuje właściwości chemiczne alkanów na przykładzie reakcji: spalania, substytucji atomu (lub atomów) wodoru przez atom (lub atomy) chloru albo bromu przy udziale światła; pisze odpowiednie równania reakcji;4) opisuje właściwości chemiczne alkenów na przykładzie reakcji: spalania, addycji: H2, Cl2 i Br2, HCl i HBr, H2O, polimeryzacji; przewiduje produkty reakcji przyłączenia cząsteczek niesymetrycznych do niesymetrycznych alkenów na podstawie reguły Markownikowa (produkty główne i uboczne); opisuje zachowanie alkenów wobec wodnego roztworu manganianu(VII) potasu; pisze odpowiednie równania reakcji;5) planuje ciąg przemian pozwalających otrzymać np. alken z alkanu (z udziałem fluorowcopochodnych węglowodorów); pisze odpowiednie równania reakcji;6) opisuje właściwości chemiczne alkinów na przykładzie reakcji: spalania, addycji: H2, Cl2 i Br2, HCl i HBr, H2O, trimeryzacji etynu; pisze odpowiednie równania reakcji;7) ustala wzór monomeru, z którego został otrzymany polimer o podanej strukturze; rysuje wzór polimeru powstającego z monomeru o podanym wzorze lub nazwie; pisze odpowiednie równania reakcji;8) klasyfikuje tworzywa sztuczne w zależności od ich właściwości (termoplasty i duroplasty); wskazuje na zagrożenia związane z gazami powstającymi w wyniku spalania się np. PVC;9) opisuje budowę cząsteczki benzenu z uwzględnieniem delokalizacji elektronów; wyjaśnia, dlaczego benzen, w przeciwieństwie do alkenów i alkinów, nie odbarwia wody bromowej ani wodnego roztworu manganianu(VII) potasu;10) planuje ciąg przemian pozwalających otrzymać np. benzen z węgla i dowolnych odczynników nieorganicznych; pisze odpowiednie równania reakcji;11) opisuje właściwości chemiczne węglowodorów aromatycznych na przykładzie reakcji: spalania, z Cl2 lub Br2 wobec katalizatora albo w obecności światła, nitrowania, katalitycznego uwodornienia; pisze odpowiednie równania reakcji dla benzenu i metylobenzenu (toluenu) oraz ich pochodnych, uwzględniając wpływ kierujący podstawników (np. atom chlorowca, grupa alkilowa, grupa nitrowa, grupa hydroksylowa, grupa karboksylowa);12) projektuje doświadczenia pozwalające na wskazanie różnic we właściwościach chemicznych węglowodorów nasyconych, nienasyconych i aromatycznych; na podstawie wyników przeprowadzonych doświadczeń wnioskuje o rodzaju węglowodoru; pisze odpowiednie równania reakcji;13) opisuje przebieg destylacji ropy naftowej i pirolizy węgla kamiennego; wymienia nazwy produktów tych procesów i ich zastosowania;14) wyjaśnia pojęcie liczby oktanowej (LO) i podaje sposoby zwiększania LO benzyny; tłumaczy, na czym polega kraking oraz reforming i uzasadnia konieczność prowadzenia tych procesów w przemyśle.⇑XIV. Hydroksylowe pochodne węglowodorów - alkohole i porównuje budowę cząsteczek alkoholi i fenoli; wskazuje wzory alkoholi pierwszo-, drugo-, i trzeciorzędowych;2) na podstawie wzoru strukturalnego, półstrukturalnego (grupowego) lub uproszczonego podaje nazwy systematyczne alkoholi i fenoli; na podstawie nazwy systematycznej lub zwyczajowej rysuje ich wzory strukturalne, półstrukturalne (grupowe) lub uproszczone;3) opisuje właściwości chemiczne alkoholi na przykładzie reakcji: spalania, z HCl i HBr, zachowania wobec sodu, utlenienia do związków karbonylowych, eliminacji wody, reakcji z nieorganicznymi kwasami tlenowymi i kwasami karboksylowymi; pisze odpowiednie równania reakcji;4) porównuje właściwości fizyczne i chemiczne alkoholi mono- i polihydroksylowych (etanolu (alkoholu etylowego), etano-1,2-diolu (glikolu etylenowego), propano-1,2-diolu (glikolu propylenowego) i propano-1,2,3-triolu (glicerolu)); projektuje i przeprowadza doświadczenie, którego przebieg pozwoli odróżnić alkohol monohydroksylowy od alkoholu polihydroksylowego; na podstawie obserwacji wyników doświadczenia klasyfikuje alkohol do mono- lub polihydroksylowych;5) opisuje zachowanie: alkoholi pierwszo-, drugo- i trzeciorzędowych wobec utleniaczy (np. CuO lub K2Cr2O7/H2SO4); projektuje i przeprowadza doświadczenie, którego przebieg pozwoli odróżnić alkohol trzeciorzędowy od alkoholu pierwszo- i drugorzędowego; pisze odpowiednie równania reakcji;6) pisze równanie reakcji manganianu(VII) potasu (w środowisku kwasowym) z alkoholem (np. z etanolem, etano-1,2-diolem);7) opisuje właściwości chemiczne fenoli na podstawie reakcji z: sodem, wodorotlenkiem sodu, bromem, kwasem azotowym(V); pisze odpowiednie równania reakcji dla benzenolu (fenolu, hydroksybenzenu) i jego pochodnych; projektuje i przeprowadza doświadczenie, którego przebieg pozwoli odróżnić alkohol od fenolu; na podstawie wyników doświadczenia klasyfikuje substancję do alkoholi lub fenoli;8) na podstawie obserwacji doświadczeń formułuje wniosek dotyczący kwasowego charakteru fenolu; projektuje i przeprowadza doświadczenie, które umożliwi porównanie mocy kwasów, np. fenolu i kwasu węglowego; pisze odpowiednie równania reakcji;9) planuje ciągi przemian pozwalających otrzymać alkohol lub fenol z odpowiedniego węglowodoru; pisze odpowiednie równania reakcji;10) porównuje metody otrzymywania, właściwości i zastosowania alkoholi i fenoli.⇑XV. Związki karbonylowe - aldehydy i opisuje podobieństwa i różnice w budowie cząsteczek aldehydów i ketonów (obecność grupy karbonylowej: aldehydowej lub ketonowej);2) na podstawie wzoru strukturalnego lub półstrukturalnego (grupowego) podaje nazwy systematyczne aldehydów i ketonów; na podstawie nazwy systematycznej rysuje wzory strukturalne lub półstrukturalne (grupowe);3) projektuje i przeprowadza doświadczenie, którego przebieg pozwoli odróżnić aldehyd od ketonu; na podstawie wyników doświadczenia klasyfikuje substancję do aldehydów lub ketonów; pisze odpowiednie równania reakcji aldehydu z odczynnikiem Tollensa i odczynnikiem Trommera;4) porównuje metody otrzymywania, właściwości i zastosowania aldehydów i ketonów.⇑XVI. Kwasy wskazuje grupę karboksylową i resztę kwasową we wzorach kwasów karboksylowych (alifatycznych i aromatycznych); na podstawie wzoru strukturalnego lub półstrukturalnego (grupowego) podaje nazwy systematyczne (lub zwyczajowe) kwasów karboksylowych; na podstawie nazwy systematycznej (lub zwyczajowej) rysuje wzory strukturalne lub półstrukturalne (grupowe);2) pisze równania reakcji otrzymywania kwasów karboksylowych (np. z alkoholi lub z aldehydów);3) pisze równania dysocjacji elektrolitycznej rozpuszczalnych w wodzie kwasów karboksylowych i nazywa powstające w tych reakcjach jony;4) opisuje właściwości chemiczne kwasów karboksylowych na podstawie reakcji tworzenia: soli, estrów, amidów; pisze odpowiednie równania reakcji; projektuje i przeprowadza doświadczenia pozwalające otrzymywać sole kwasów karboksylowych (w reakcjach kwasów z: metalami, tlenkami metali, wodorotlenkami metali i solami kwasów o mniejszej mocy);5) uzasadnia przyczynę redukujących właściwościach kwasu metanowego (mrówkowego); projektuje i przeprowadza doświadczenie, którego wynik wykaże właściwości redukujące kwasu metanowego (mrówkowego) (reakcja HCOOH z MnO4-); pisze odpowiednie równania reakcji;6) opisuje czynniki wpływające na moc kwasów karboksylowych (długość łańcucha węglowego, obecność polarnych podstawników);7) projektuje i przeprowadza doświadczenie, którego wynik dowiedzie, że dany kwas organiczny jest kwasem słabszym np. od kwasu siarkowego(VI) i mocniejszym np. od kwasu węglowego; na podstawie wyników doświadczenia porównuje moc kwasów;8) projektuje i przeprowadza doświadczenie, którego wynik wykaże podobieństwo we właściwościach chemicznych kwasów nieorganicznych i kwasów karboksylowych;9) wyjaśnia przyczynę zasadowego odczynu wodnych roztworów niektórych soli, np. octanu sodu i mydła; pisze odpowiednie równania reakcji;10) wymienia zastosowania kwasów karboksylowych;11) opisuje budowę hydroksykwasów; wyjaśnia możliwość tworzenia estrów międzycząsteczkowych (laktydy, poliestry) i wewnątrzcząsteczkowych (laktony) przez niektóre hydroksykwasy; pisze odpowiednie równania reakcji; opisuje występowanie i zastosowania hydroksykwasów (np. kwasu mlekowego i salicylowego).⇑XVII. Estry i opisuje strukturę cząsteczek estrów i wiązania estrowego;2) tworzy nazwy (systematyczne lub zwyczajowe) estrów kwasów karboksylowych i tlenowych kwasów nieorganicznych; rysuje wzory strukturalne i półstrukturalne (grupowe) estrów na podstawie ich nazwy;3) projektuje i przeprowadza reakcje estryfikacji; pisze równania reakcji alkoholi z kwasami nieorganicznymi i karboksylowymi; wskazuje na funkcję stężonego H2SO4;4) wskazuje wpływ różnych czynników na położenie stanu równowagi reakcji estryfikacji lub hydrolizy estru;5) wyjaśnia i porównuje przebieg hydrolizy estrów (np. octanu etylu) w środowisku kwasowym (reakcja z wodą w obecności kwasu siarkowego(VI)) oraz w środowisku zasadowym (reakcja z wodorotlenkiem sodu); pisze odpowiednie równania reakcji;6) opisuje budowę tłuszczów stałych i ciekłych (jako estrów glicerolu i długołańcuchowych kwasów tłuszczowych) oraz ich właściwości fizyczne i zastosowania;7) projektuje i przeprowadza doświadczenie, którego wynik dowiedzie, że w skład oleju jadalnego wchodzą związki o charakterze nienasyconym;8) opisuje proces utwardzania tłuszczów ciekłych; pisze odpowiednie równanie reakcji;9) opisuje proces zmydlania tłuszczów; pisze odpowiednie równania reakcji;10) wyjaśnia, w jaki sposób z glicerydów otrzymuje się kwasy tłuszczowe lub mydła; pisze odpowiednie równania reakcji;11) wyjaśnia, na czym polega proces usuwania brudu; bada wpływ twardości wody na powstawanie związków trudno rozpuszczalnych; zaznacza fragmenty hydrofobowe i hydrofilowe we wzorach cząsteczek substancji powierzchniowo czynnych;12) wymienia zastosowania estrów;13) planuje ciągi przemian chemicznych wiążące ze sobą właściwości poznanych węglowodorów i ich pochodnych; pisze odpowiednie równania reakcji.⇑XVIII. Związki organiczne zawierające opisuje budowę amin; wskazuje wzory amin pierwszo-, drugo- i trzeciorzędowych;2) porównuje budowę amoniaku i amin; rysuje wzory elektronowe cząsteczek amoniaku i aminy (np. metyloaminy);3) wskazuje podobieństwa i różnice w budowie amin alifatycznych (np. metyloaminy) i amin aromatycznych (np. fenyloaminy (aniliny));4) porównuje i wyjaśnia przyczynę zasadowych właściwości amoniaku i amin; pisze odpowiednie równania reakcji;5) pisze równania reakcji otrzymywania amin alifatycznych (np. w procesie alkilowania amoniaku) i amin aromatycznych (np. otrzymywanie aniliny w wyniku reakcji redukcji nitrobenzenu);6) opisuje właściwości chemiczne amin na podstawie reakcji: z wodą, z kwasami nieorganicznymi (np. z kwasem solnym) i z kwasami karboksylowymi; pisze odpowiednie równania reakcji;7) pisze równanie reakcji fenyloaminy (aniliny) z wodą bromową;8) pisze równania reakcji hydrolizy amidów (np. acetamidu) w środowisku kwasowym i zasadowym;9) analizuje budowę cząsteczki mocznika ( brak fragmentu węglowodorowego) i wynikające z niej właściwości, wskazuje na jego zastosowania (nawóz sztuczny, produkcja leków, tworzyw sztucznych);10) pisze równanie reakcji kondensacji dwóch cząsteczek mocznika; wykazuje, że produktem kondensacji mocznika jest związek zawierający w cząsteczce wiązanie amidowe (peptydowe);11) pisze wzór ogólny α-aminokwasów w postaci RCH(NH2)COOH; wyjaśnia, co oznacza, że aminokwasy białkowe są α-aminokwasami i należą do szeregu konfiguracyjnego L;12) projektuje i przeprowadza doświadczenie, którego wynik potwierdzi amfoteryczny charakter aminokwasów; opisuje właściwości kwasowo-zasadowe aminokwasów oraz mechanizm powstawania jonów obojnaczych;13) pisze równania reakcji kondensacji cząsteczek aminokwasów (o podanych wzorach) prowadzących do powstania di- i tripeptydów i wskazuje wiązania peptydowe w otrzymanym produkcie;14) tworzy wzory dipeptydów i tripeptydów, powstających z podanych aminokwasów; rozpoznaje reszty aminokwasów białkowych w cząsteczkach peptydów;15) opisuje przebieg hydrolizy peptydów, rysuje wzory półstrukturalne (grupowe) aminokwasów powstających w procesie hydrolizy peptydu o danej strukturze;16) projektuje i przeprowadza doświadczenie, którego wynik dowiedzie obecności wiązań peptydowych w analizowanym związku (reakcja biuretowa).⇑XIX. opisuje budowę białek (jako polimerów kondensacyjnych aminokwasów);2) opisuje strukturę drugorzędową białek (α- i β-) oraz wykazuje znaczenie wiązań wodorowych dla ich stabilizacji; tłumaczy znaczenie trzeciorzędowej struktury białek i wyjaśnia stabilizację tej struktury przez grupy R-, zawarte w resztach aminokwasów (wiązania jonowe, mostki disiarczkowe, wiązania wodorowe i oddziaływania van der Waalsa);3) wyjaśnia przyczynę denaturacji białek wywołanej oddziaływaniem na nie soli metali ciężkich i wysokiej temperatury; wymienia czynniki wywołujące wysalanie białek i wyjaśnia ten proces;4) projektuje i przeprowadza doświadczenie pozwalające na identyfikację białek (reakcja biuretowa i reakcja ksantoproteinowa).⇑XX. dokonuje podziału cukrów na proste i złożone, klasyfikuje cukry proste ze względu na grupę funkcyjną i liczbę atomów węgla w cząsteczce; wyjaśnia, co oznacza, że naturalne monosacharydy należą do szeregu konfiguracyjnego D;2) wskazuje na pochodzenie cukrów prostych zawartych np. w owocach (fotosynteza);3) zapisuje wzory łańcuchowe w projekcji Fischera glukozy i fruktozy; wykazuje, że cukry proste należą do polihydroksyaldehydów lub polihydroksyketonów; rysuje wzory taflowe (Hawortha) anomerów α i β glukozy i fruktozy; na podstawie wzoru łańcuchowego monosacharydu rysuje jego wzory taflowe; na podstawie wzoru taflowego rysuje wzór w projekcji Fischera; rozpoznaje reszty glukozy i fruktozy w disacharydach i polisacharydach o podanych wzorach;4) projektuje i przeprowadza doświadczenie, którego wynik potwierdzi właściwości redukujące np. glukozy; projektuje i przeprowadza doświadczenie, którego wynik potwierdzi obecność grup hydroksylowych w cząsteczce monosacharydu, np. glukozy;5) opisuje właściwości glukozy i fruktozy; wskazuje na ich podobieństwa i różnice; projektuje i przeprowadza doświadczenie pozwalające na odróżnienie tych cukrów;6) wskazuje wiązanie O-glikozydowe w cząsteczkach cukrów o podanych wzorach (np. sacharozy, maltozy, celobiozy, celulozy, amylozy, amylopektyny);7) wyjaśnia, dlaczego maltoza ma właściwości redukujące, a sacharoza nie wykazuje właściwości redukujących;8) projektuje i przeprowadza doświadczenie pozwalające przekształcić cukry złożone (np. sacharozę) w cukry proste;9) porównuje budowę cząsteczek i właściwości skrobi i celulozy;10) pisze uproszczone równanie hydrolizy polisacharydów (skrobi i celulozy);11) planuje ciąg przemian pozwalających przekształcić cukry w inne związki organiczne (np. glukozę w alkohol etylowy, a następnie w octan etylu); pisze odpowiednie równania reakcji.⇑XXI. Chemia wokół klasyfikuje włókna na: celulozowe, białkowe, sztuczne i syntetyczne; wskazuje ich zastosowania; opisuje wady i zalety; uzasadnia potrzebę stosowania tych włókien;2) projektuje i przeprowadza doświadczenie pozwalające zidentyfikować włókna celulozowe, białkowe, sztuczne i opisuje tworzenie się emulsji, ich zastosowania; analizuje skład kosmetyków (np. na podstawie etykiety kremu, balsamu, pasty do zębów itd.) i wyszukuje w dostępnych źródłach informacje na temat ich działania;4) wyjaśnia, na czym mogą polegać i od czego zależeć lecznicze i toksyczne właściwości substancji chemicznych (dawka, rozpuszczalność w wodzie, sposób przenikania do organizmu), np. aspiryny, nikotyny, etanolu (alkoholu etylowego);5) wyszukuje informacje na temat działania składników popularnych leków (np. węgla aktywowanego, aspiryny, środków neutralizujących nadmiar kwasu w żołądku);6) wyszukuje informacje na temat składników zawartych w kawie, herbacie, mleku, wodzie mineralnej, napojach typu cola w aspekcie ich działania na organizm ludzki;7) opisuje procesy fermentacyjne zachodzące podczas wyrabiania ciasta i pieczenia chleba, produkcji wina, otrzymywania kwaśnego mleka, jogurtów, serów; pisze równania reakcji fermentacji alkoholowej, octowej i mlekowej;8) wyjaśnia przyczyny psucia się żywności i proponuje sposoby zapobiegania temu procesowi; przedstawia znaczenie i konsekwencje stosowania dodatków do żywności, w tym konserwantów;9) wskazuje na charakter chemiczny składników środków do mycia szkła, przetykania rur, czyszczenia metali i biżuterii w aspekcie zastosowań tych produktów; wyjaśnia na czym polega proces usuwania zanieczyszczeń za pomocą tych środków oraz opisuje zasady bezpiecznego ich stosowania;10) podaje przykłady opakowań (celulozowych, szklanych, metalowych, z tworzyw sztucznych) stosowanych w życiu codziennym; opisuje ich wady i zalety;11) proponuje sposoby zagospodarowania odpadów; opisuje powszechnie stosowane metody utylizacji.⇑XXII. Elementy ochrony tłumaczy, na czym polegają sorpcyjne właściwości gleby w uprawie roślin i ochronie środowiska; opisuje wpływ pH gleby na wzrost wybranych roślin; planuje i przeprowadza badanie kwasowości gleby oraz badanie właściwości sorpcyjnych gleby;2) wymienia podstawowe rodzaje zanieczyszczeń powietrza, wody i gleby (np. metale ciężkie, węglowodory, produkty spalania paliw, freony, pyły, azotany(V), fosforany(V) (ortofosforany(V)), ich źródła oraz wpływ na stan środowiska naturalnego; wymienia działania (indywidualne/kompleksowe), jakie powinny być wprowadzane w celu ograniczania tych zjawisk; opisuje rodzaje smogu oraz mechanizmy jego powstawania;3) proponuje sposoby ochrony środowiska naturalnego przed zanieczyszczeniem i degradacją zgodnie z zasadami zrównoważonego rozwoju;4) wskazuje potrzebę rozwoju gałęzi przemysłu chemicznego (leki, źródła energii, materiały); wskazuje problemy i zagrożenia wynikające z niewłaściwego planowania i prowadzenia procesów chemicznych; uzasadnia konieczność projektowania i wdrażania procesów chemicznych umożliwiających ograniczenie lub wyeliminowanie używania albo wytwarzania niebezpiecznych substancji; wyjaśnia zasady tzw. zielonej chemii;5) wskazuje powszechność stosowania środków ochrony roślin oraz zagrożenia dla zdrowia ludzi i środowiska wynikające z nierozważnego ich użycia.⇑Komentarzpodstawa programowa przedmiotu chemiaWitold Anusiak⇑Zakres podstawowyW dziale I Atomy, cząsteczki i stechiometria chemiczna wprowadza się pojęcia mola i liczby Avogadro. Powoduje to rozszerzenie interpretacji zapisu równań reakcji chemicznych oraz wprowadzenie obliczeń stechiometrycznych związanych z wykorzystaniem pojęcia mola. Umiejętność rozwiązywania problemów obliczeniowych dotyczących stechiometrii procesów chemicznych należy oczywiście utrwalać podczas realizacji kolejnych Budowa atomu wprowadza zapis podpowłokowej konfiguracji elektronowej pierwiastków do wapnia włącznie. Pozwala to na lepsze rozumienie zagadnień związanych z elektronową budową atomów i Wiązania chemiczne. Oddziaływania międzycząsteczkowe zawiera wymagania dotyczące rodzajów wiązań kowalencyjnych, w tym również donorowo-akceptorowych, z uwzględnieniem wiązań typu o i n, oraz wiązania metalicznego. Podczas realizacji tego działu należy zwrócić uwagę na rodzaje oddziaływań międzycząsteczkowych oraz wpływ wiązań chemicznych i oddziaływań międzycząsteczkowych na właściwości makroskopowe substancji chemicznych. Do tych wiadomości należy odwoływać się podczas omawiania typowych właściwości kolejnych grup związków nieorganicznych i realizacji działu Kinetyka i statyka chemiczna. Energetyka reakcji chemicznych - wprowadza się pojęcia: szybkość reakcji, efekt energetyczny, entalpia, układ, co pozwala na zrozumienie przez uczniów przebiegu reakcji chemicznych i działania czynników, które na ten przebieg Roztwory powinien służyć opanowaniu umiejętności praktycznego przygotowywania określonych rodzajów roztworów oraz prowadzenia niezbędnych obliczeń dotyczących szczegółowe w dziale Reakcje w roztworach wodnych - pozwalają na wyjaśnienie procesów dysocjacji słabych elektrolitów poprzez wprowadzenie pojęcia stopnia dysocjacji. Uczniowie powinni również poznać interpretację ilościową wartości pH. Ilustracją procesów równowagowych zachodzących w roztworach będzie hydroliza VII Systematyka związków nieorganicznych opisuje wymagania związane z budową i właściwościami związków nieorganicznych w szerszym zakresie, niż to było w szkole podstawowej. Wprowadzone jest wymaganie dotyczące np.: umiejętności podziału związków nieorganicznych na odpowiednie grupy ze względu na ich właściwości i zilustrowanie tych właściwości odpowiednimi równaniami reakcji. Wymagania szczegółowe obejmują również związki o charakterze VIII Reakcje utleniania i redukcji i dział IX Elektrochemia to zbiór wymagań, które nie były omawiane w szkole podstawowej i są wprowadzane po raz pierwszy w edukacji chemicznej uczniów. Dlatego mechanizm reakcji utleniania-redukcji powinien być przede wszystkim pokazany na przykładzie reakcji spalania lub innych, które uczniowie już znają, np.: reakcji metali aktywnych z kwasami nieutleniającymi. Opis budowy i pracy ogniwa powinno ułatwić rozumienie działania baterii i akumulatorów, czyli powszechnie stosowanych chemicznych źródeł prądu, i posłużyć wprowadzeniu do języka chemicznego uczniów określeń, z którymi w przyszłości będą się spotykali. Po wprowadzeniu wyżej wymienionych treści, pojęcie korozji znane uczniom z bardzo ogólnego opisu wprowadzonego w szkole podstawowej stanie się w dziale X Metale, niemetale i ich związki wymagania należy traktować jako podsumowanie i utrwalenie treści, które występują w innych miejscach podstawy. Zebrane w tym jednym miejscu wymagania szczegółowe pozwalają nauczycielowi dokonać ewaluacji procesu nauczania, a uczniowi umożliwią sprawdzenie, czy potrafi powiązać nabyte wiadomości i umiejętności z nowymi szczegółowe występujące w dziale XI Zastosowania wybranych związków nieorganicznych pozwalają podsumowywać wiadomości z zakresu chemii nieorganicznej. Realizacja opisywanych tutaj treści nauczania ma na celu pokazanie praktycznej, użytkowej strony związków nieorganicznych, ich znaczenia w przemyśle, rolnictwie oraz w życiu codziennym. Realizacja tych wymagań na tym etapie, a więc po omówieniu właściwości związków nieorganicznych, sprzyja lepszemu zrozumieniu przez uczniów omawianych tutaj zagadnień, co było trudne do uzyskania przy realizacji poprzedniej podstawy programowej w zakresie XII pod nazwą Wstęp do chemii organicznej jest zbiorem wymagań opisujących treści nauczania, które pojawiałyby się przy omawianiu prawie każdej kolejnej grupy związków organicznych. W celu wyeliminowania wszelkich powtórzeń w zapisach podstawy programowej zebrano je w jednym miejscu. Przy realizacji kolejnych działów należy pamiętać o wymaganiach opisanych w tym dziale. Opisane tu umiejętności uczeń powinien opanować w całości na końcu swojej edukacji. Warto skierować uwagę uczniów na wymagania z tego działu przed rozpoczęciem omawiania chemii organicznej. Będą oni wtedy wiedzieli, na jakie zagadnienia muszą zwrócić uwagę podczas zapoznawania się z właściwościami kolejnych grup związków organicznych. Istotne jest, aby omawiając kolejne grupy związków organicznych, zwracać uwagę na wpływ budowy (długość łańcucha, obecność grup funkcyjnych) na właściwości makroskopowe dziale XIII Węglowodory:• rozszerzona jest znajomość wzorów i nazw węglowodorów do C10,• wprowadzone są informacje dotyczące związków aromatycznych, przede wszystkim na przykładzie budowy i właściwości benzenu,• pojawia się nowe pojęcie: reakcja substytucji,• przy omawianiu reakcji addycji zwiększa się liczba substancji przyłączanych do cząsteczek nienasyconych oraz omawia się regułę Markownikowa na najprostszych przykładach,• wiadomości o węglowodorach uzupełniają wymagania dotyczące budowy i właściwości tworzyw sztucznych i polimerów oraz znaczenia procesów przerobu węgla kamiennego i ropy kolejnych działach omawiających poszczególne grupy związków znajdujemy wymagania szczegółowe znacznie poszerzone w stosunku do działu Pochodne węglowodorów podstawy programowej szkoły podstawowej. W przypadku hydroksylowych pochodnych węglowodorów (Dział XIV) wprowadzane są wymagania związane z budową i właściwościami fenolu. Należy przy realizacji treści programowych położyć duży nacisk na umiejętność odróżniania poszczególnych hydroksylopochodnych węglowodorów od siebie i porównywania ich następnym dziale Związki karbonylowe - aldehydy i ketony opisywane są wymagania nieznanej dotychczas uczniom grupy związków. Właściwości tej grupy powinny być omawiane na podstawie metanalu i propanonu. W trakcie omawiania tej grupy związków, koniecznie trzeba doświadczalnie zilustrować ich właściwości. Będzie miało to istotne znaczenie później przy omawianiu właściwości węglowodanów (cukrów).W dziale XVI opisane zostały wymagania szczegółowe związane z kwasami karboksylowymi. Informacje na ich temat rozszerzamy na większą grupę związków do C4. oraz dokonujemy charakteryst
Arkusze CKE z chemii rozszerzonej wraz sugerowanymi odpowiedziami znajdziecie je w poniższej galerii. ZOBACZ WIĘCEJ: Matura 2022 chemia: Arkusze, pytania, zadania z chemii na poziomie rozszerzonym
Home Szkoła i EdukacjaMatura zapytał(a) o 09:47 Gdzie znajdę zagadnienia do matury rozszerzonej z chemii? W tym roku to już na serio musze się przyłóżyć i poprawić maturę, ale musze obrać jakaś taktykę. Liczyłam, że te zagadienia będą na stronie cke, bo w sumie to oni powinni podać wymagania do matury, ale nie znalazłam. Szukałam w google, ale są takie, które podają ludzie typu: [LINK] i nie chciałabym niczego pominąć, więc może ktoś juz kiedyś szukał i znalazł jakoś fajnie opracowane zagadnienia, gdzie na pewno są wszystkie. To pytanie ma już najlepszą odpowiedź, jeśli znasz lepszą możesz ją dodać 1 ocena Najlepsza odp: 100% Najlepsza odpowiedź karola31 odpowiedział(a) o 11:02: Jest na CKE:dla roku 2014/2015 - [LINK]Nie powinno się wiele zmienić, więc jako poprawiający piszesz pewnie z podobnych tematów. Ale jeśli chcesz porównać, tu masz jeszcze jedną stronę z wymaganiami: [LINK]Powodzenia, też poprawiam chemię, chociaż nie zamierzam się przygotowywać, mam nadzieję, że studia zrobią to za mnie ;) Uważasz, że znasz lepszą odpowiedź? lub
Zajęcia z Panem Profesorem polecam wszystkim, którzy borykają się z problemami z matematyką. Sama skorzystałam z jego pomocy jeszcze w liceum gdy przygotowywałam się do matury a także wielokrotnie w trakcie studiów. Dzięki temu bez problemu zaliczyłam wszystkie kolokwia i nie poślizgnełam się na żadnym egzaminie.
Kronos Posty: 2 Rejestracja: 16 cze 2008, o 22:07 Pytanie Witam, kończe teraz 2 kl. LO i na wakacjach mam zamiar przygotować się do matury z chemii. Od czego zacząć naukę? Chce przerobvić cały zakres podstawowy i rozszerzony. Zaznaczam że chodzę do klasy bez rozszerzonej chemii i większość rzeczy muszę zrobić sam. Moja nauczycielka radzi mi zacząć od moli, a wg. was? Tompol Re: Pytanie Post autor: Tompol » 13 cze 2009, o 08:32 żadnych moli!. gwarantuje Ci ,ze z chemii nie znasz podstaw mimo ,ze Ci się wydaje ,że je znasz Czyli tak: Wydrukuj sobie zagadnienia do matury bez problemu znajdziesz je w necie. One są ułożone od początku do końca (na końcu masz organiczną ). Ja jak zaczynałem się uczyć do matury to dopiero w grudniu i mimo ,że coś wiedziałem , wiedza nazwać tego nie można było , ale działanie schematami Chemii możesz nauczyć się na dwa sposoby , albo ja zrozumieć , albo nauczyć się schematów. Jeśli ją zrozumiesz to nie zapomnisz jej , a nawet jak tak to łatwiej będzie Ci sobie coś przypomnieć do czegoś dojść. Pierwszy temat to budowa atomu. Mi dwa miesiące wystarczyło ,żeby z niczego (próbne pisałem słabo) , maturę napisać na 90%. Najlepiej ,żeby z każdego tematu jeszcze sprawdzać swoją wiedzę , polecam te ćwiczenia , lecz chemie Nowa-matura-Biologia-zadania-Poziom-podstawowy-i-rozszerzony_Jolanta-Kujawska-Tomasik no i zbiór Pazdro do obliczeń rachunkowych Mandarynka Posty: 357 Rejestracja: 23 cze 2009, o 13:33 Matura 2010 - CHEMIA Post autor: Mandarynka » 31 lip 2009, o 19:40 Ponieważ istnieje taki temat w dziale o biologii zakładam podobny na chemii A więc kto i jaki poziom chemii zdaje? Jak się uczy i na jakim jest etapie ittttp. jessie Posty: 6 Rejestracja: 31 lip 2009, o 19:43 Re: Matura 2010 - CHEMIA Post autor: jessie » 31 lip 2009, o 20:55 Właściwie to nie jestem przekonana czy będę zdawać maturę z chemi, ale może mi coś poradzicie. Chcę się dostać na studia biologiczne gdziekolwiek, chociaż zależy mi na UAM Bede zdawac biologie rozszerzona, no i matematyke podstawową, ale nie sadze żebym uzyskała wysok wynik, więc zastanawiam się nad chemią. Tylko ja w szkole miałam podstawową i w 3 klasie nie mam juz chemi. I pytanie moje jest takie, czy warto w ogole się nad tym zastanawiać? Lubie chemie, ale nie wiem czy lepiej by nie było przyłozyc się do matmy niż zaczynac z chemia. Ranger Posty: 137 Rejestracja: 14 lip 2009, o 14:33 Re: Matura 2010 - CHEMIA Post autor: Ranger » 31 lip 2009, o 22:29 Na to pytanie, chyba musisz sobie sama odpowiedzieć. Zależy czy się czujesz na siłach. Domyślam się, że chodzi Ci o chemię podstawową. Jeśli potrafisz się sprężyć to czemu nie, nie jest to rozszerzenie, więc w rok powinnaś opanować materiał. Zależy od Twoich chęci i aspiracji. kamyk Posty: 27 Rejestracja: 17 sie 2008, o 11:08 Re: Matura 2010 - CHEMIA Post autor: kamyk » 31 lip 2009, o 22:47 jessie, to zależy jak oceniasz swoje możliwości i czy aż tak nie lubisz matmy. Zdążyć, zdążysz, więc po prostu, co wolisz. anusiagd Posty: 120 Rejestracja: 30 wrz 2008, o 19:46 Re: Matura 2010 - CHEMIA Post autor: anusiagd » 31 lip 2009, o 22:57 Ja podchodzę do rozszerzonej chemii, ale jak już pisałam w wątku wyżej przez Mandarynkę wspomnianym, słabo to widzę. no ale praca, praca i ściubolenie zbiorów zadańltsceptyczny lt- mój aktualny komentarz na temat ww kwestii kamyk Posty: 27 Rejestracja: 17 sie 2008, o 11:08 Re: Matura 2010 - CHEMIA Post autor: kamyk » 31 lip 2009, o 23:50 ja też rozszerzona chemia, hmmm na jakim etapie jestem? a no tak z 5 zadań zrobiłam ja nie wiem jak to będzie, będę się uczyć, ale boję się, po prostu, lubię szkołę i mi jej już nawet brakuje, ale ta perspektywa mega ważnej matury w moim wieku jest dla mnie straszna. No cóż, zobaczymy, może nie taki diabeł straszny jak go malują stellar Posty: 746 Rejestracja: 20 wrz 2008, o 06:08 Re: Matura 2010 - CHEMIA Post autor: stellar » 1 sie 2009, o 07:58 Ja mam zamiar zdawać rozszerzoną chemię i mam obawy Chociaż materiał mam na razie bardzo kulawo przerobiony, bo w szkole to o mojej chemii wolę nic nie mówić, żal na kółkach A na korepetycjach zrobiłam trochę, ale to wciąż mało, no ale mamy jeszcze cały rok, choć nie cały ] Myślę, że najgorzej u mnie jest z nieorganiczną, hybrydyzacjami i charakterystyką niektórych pierwiastków i do tego będę musiała najsolidniej przysiąść, o organicznej to nie wspomnę Nie jest ona dla mnie trudna, ale również ją w drugiej klasie to nie można powiedzieć że nawet omówiliśmy, a raczej przekartkowaliśmy. Glukoza Posty: 39 Rejestracja: 7 lis 2008, o 15:54 Re: Matura 2010 - CHEMIA Post autor: Glukoza » 2 sie 2009, o 11:26 Witam! Ja również planuję zdawać chemię rozszerzoną. Już w czerwcu wzięłam się do powtórek i połowę materiału mam już za sobą, ale jestem przerażona, bo tego, co powtarzałam na początku, już nie pamiętam zastanawia mnie fakt czy da się wszystkiego nauczyć do matury? Tzn. mieć wszystko opanowane? Co Wy o tym myślicie? Właściwie wydaje mi się, że nawet na dzień przed egzaminem dużo nie będziemy umieli bajer Posty: 302 Rejestracja: 13 maja 2009, o 10:38 Re: Matura 2010 - CHEMIA Post autor: bajer » 2 sie 2009, o 12:31 owszem da się wszystko opanować bez problemu, jak to nam powiedziała nauczycielka od biologii mózg ludzki jest tak skonstruowany że jak przeczytasz to samo po raz trzeci to w razie potrzeby przy skupieniu na pewno to odtworzy a od września do maja to dacie radę przeczytac wszystko po 5 albo i 6 razy przy czasie wolnym dla siebie 2 Odpowiedzi 4124 Odsłony Ostatni post autor: Kojtek 14 lip 2016, o 17:04 0 Odpowiedzi 1806 Odsłony Ostatni post autor: Anarchia 7 gru 2017, o 11:58 4 Odpowiedzi 3780 Odsłony Ostatni post autor: markap75 6 lis 2014, o 16:39 1 Odpowiedzi 2741 Odsłony Ostatni post autor: Nitrogenium32 25 lip 2017, o 17:33 3 Odpowiedzi 7422 Odsłony Ostatni post autor: Black_W 26 kwie 2016, o 21:49 Kto jest online Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 0 gości
Эбаբኧս ሡуν ነусущиሴымե
Κመժቷκеդի ጭխዡоπеςօфо ቤըքաкозвθб
А оζθли трθփоби
Огук аχесоտ рխ
Хаብы ኞдеጧ е
Хиጲ апիтищ αнтэ
Усθтαዷը αщ йιр
ደ ιቦጱзв
Гሼнο δሽщежиρխ
ዉскወ ρоսቿւиճахω
Szczegółowa analiza wymagań maturalnych z chemii 2021. Zacznijmy od analizy krok po kroku wymagań z zeszłych lat i tych obecnych. Wykreślone zostały następujące zagadnienia: Ustala skład izotopowy pierwiastka (w % masowych) na podstawie jego masy atomowej; Opisuje mechanizm tworzenia wiązania jonowego (np. w chlorkach i tlenkach metali);
Zbliżający się początek roku szkolnego to czas nie tylko przygotowań pod kątem zeszytów i podręczników, ale też myślenia nad swoją przyszłością. Uczniowie, którzy rozpoczynają przygodę z liceum, stają przed trudnym wyborem fakultetu, na jaki będą uczęszczać. Wiąże się to w głównej mierze z przedmiotami, które następnie będą rozszerzać na maturze z myślą o kierunku studiów. Na jakie studia przydaje się rozszerzona chemia i jak najlepiej przygotować się do matury z tego przedmiotu?Na jakie studia można rekrutować?Wynik maturalny z rozszerzonej chemii otwiera mnóstwo drzwi do przyszłej kariery - dobrze jest jednak posiadać również punkty z innych przedmiotów ścisłych, takich jak np. biologia, fizyka czy matematyka, które bardzo często także liczą się podczas rekrutacji. Posiadając wysoki wynik, można dostać się na studia medyczne oraz pokrewne, np. kierunek lekarski, stomatologię, weterynarię, czy farmację. Można też wybrać bardziej związane z tym przedmiotem kierunki, przykładowo: chemię kryminalistyczną i sądową, biotechnologią, chemię budowlaną czy technologię chemiczną. Uczelnie stoją otworem dla przyszłych studentów, wystarczy tylko dokładnie zapoznać się z ich wymaganiami przygotować się do matury rozszerzonej z chemii?Egzamin dojrzałości jest przepustką na wymarzone studia, dlatego już od rozpoczęcia nauki w liceum należy powoli o nim myśleć. Chemia jest rozległą dziedziną nauki, dlatego należy dobrze opanować podstawowy materiał. Opisany w podręcznikach, np. "To jest chemia 1. Zakres podstawowy. Chemia ogólna i nieorganiczna", nie powinien stwarzać problemów, tym bardziej że jest wytłumaczony zrozumiałym i łatwym językiem. Po zrozumieniu podstawowych informacji można zacząć bardziej zagłębiać się w ten przedmiot. Dobra znajomość struktury atomów, organicznych i nieorganicznych związków chemicznych, reakcji charakterystycznych oraz równań tych reakcji to wiedza, którą musi opanować każdy maturzysta. Na początku zagadnienia te mogą wydawać się skomplikowane, jednak przy pomocy nauczyciela oraz odpowiednim wprowadzaniu bardziej zaawansowanych tematów, można ze spokojem opanować cały materiał wymagany na - jak się za nie zabrać?Zadania obliczeniowe z chemii mogą wydawać się skomplikowane na pierwszy rzut oka, jednak po przerobieniu znacznej ich ilości nie powinny sprawiać większych problemów. Ważne jest to, żeby dobrze zaznajomić się z podstawami, ponieważ to na nich w głównej mierze bazuje się podczas ich rozwiązywania.
Tego dowiemy się już w poniedziałek, 16 maja po południu, po opublikowaniu arkuszy CKE z chemii rozszerzonej. Czytaj też: Kaktusy hitem matury 2022 również z rozszerzonego angielskiego. W
O Maturze - wszystko co musisz wiedzieć podczas przygotowań do matury z chemii Solidne przygotowanie do matury z chemii to umiejętne połączenie interesujących zagadnień teoretycznych wraz z praktyką. Główną formą ćwiczeń, jakie realizujemy jest rozwiązywanie w trakcie kursu dużej ilości arkuszy egzaminacyjnych. Na naszych spotkaniach, zarówno w formie on-line (kurs e-learningowy) jak i stacjonarnie/webinarowo (zajęcia w Warszawie) kładziemy nacisk głównie na te dwa obszary. Formuła matury z chemii Egzamin maturalny z chemii trwa 180 minut. Arkusz zawiera około 45 zadań różnej długości, których punktacja zależy od stopnia złożoności zadania. Jedną z nowości, jakie wprowadza arkusz Matura 2023, jest występowanie zadań w wiązkach tematycznych, które dotyczą jednego rozbudowanego problemu. Arkusz maturalny z Chemii zawiera zarówno zadania otwarte jak i zamknięte. Zadania zamknięte oparte są na kilku podstawowych modelach:– zadania wyboru odpowiedzi spośród podanych (tak zwane ABC)– zadania prawda/fałsz– zadania „na dobieranie”Zadania otwarte cechują się znacznie większą różnorodnością:– zadania z luką– zadania krótkiej odpowiedzi pisemnej – zadania odpowiedzi rozszerzonej (dotyczą przede wszystkim zadań opierających się na argumentacji i zadań obliczeniowych)Wśród najtrudniejszych zadań maturalnych z chemii w pierwszej kolejności wymienia się zadania doświadczalne. Trudność w ich rozwiązywaniu wynika z ograniczonych możliwości uczniów do samodzielnego przeprowadzenia podobnych doświadczeń w klasach licealnych. Ich rozwiązanie wymaga więc znacznych zdolności przewidywania przebiegu procesów chemicznych i zjawisk fizycznych. Zadania te wymagają również umiejętności projektowania doświadczenia, a nie tylko opisywania obserwacji. Tematyka matury z chemii Maturzyści piszący arkusz maturalny z chemii powinni mieć opanowany cały materiał zawarty w podstawie programowej Szczególnie istotne są tutaj następujące zagadnienia matury z chemii: Atomy, cząsteczki i stechiometriaBudowa atomu a układ okresowy pierwiastkówWiązania chemiczne i oddziaływania międzycząsteczkoweKinetyka i statyka chemicznaRoztwory wodneReakcje w roztworach wodnychSystematyka związków nieorganicznychReakcje utleniania i redukcjiElektrochemiaMetale, niemetale i ich związkiZastosowania wybranych związków nieorganicznychWęglowodoryHydroksylowe pochodne węglowodorów − alkohole i fenoleZwiązki karbonylowe − aldehydy i ketonyKwasy karboksyloweEstry i tłuszczeZwiązki organiczne zawierające azotBiałkaCukryElementy ochrony środowiska Dokładną listę tematów wchodzących w skład tych ogólnych kategorii znajdziesz w zakładce „Zagadnienia” na naszej stronie. Przygotowanie do matury z chemii Osiągnięcie dobrego wyniku na maturze z chemii nie jest łatwe, ale z całą pewnością możliwe! Początkową trudność może stanowić fakt, że zakres materiału się dość obszerny i skomplikowany. Istotna jest również umiejętność szybkiego rozwiązywania rozbudowanych zadań te kompetencje ćwiczymy w ramach kursów, które prowadzimy i doskonalimy od wielu lat! Zajrzyj do odpowiedniej zakładki na naszej stronie i wybierz format nauki stworzony dla Ciebie. Przygotuj się do matury z chemii z nami! Promocja!
Wyniki matury z chemii absolwenci poznają 7 lipca. Matura 2023: Arkusze CKE z chemii w formule 2015 CKE opublikowała na swoich stronach internetowych arkusze egzaminacyjne z chemii na poziomie
I. Czy to Twój cel? Większość uczniów, którym zależy na uzyskaniu wysokiego wyniku na maturze z chemii, to osoby pragnące dostać się na kierunki medyczne. Często celem jest dostanie się na Warszawski Uniwersytet Medyczny. Trzeba zdać sobie sprawę, że realizacja tego celu jest czymś w rodzaju sportu wyczynowego. Życie sportowców starających się wygrywać zawody jest całkowicie podporządkowane treningom, diecie i pracy nad swoją psychiką. Jest to ostry reżim i codzienne wyzwanie dla umiejętności zdyscyplinowania się do konsekwentnej realizacji planu. Dlatego… Zadaj sobie poważnie i szczerze pytanie: Czy ja naprawdę chcę dostać się na WUM? Czasem zdarza się, że decyzja ta jest w rzeczywistości decyzją rodziców, którą syn czy córka niejako automatycznie przejmuje. Jeżeli nie jesteś absolutnie pewien, że to Twój własny nieprzymuszony wybór i że jesteś gotów na intensywną naukę przez długi czas, to lepiej zrobisz zmieniając plany życiowe. Trudno wyobrazić sobie wygrywającego zawody sportowca, który tak naprawdę nie jest pewien, czy chce uprawiać wyczynowo swoją dyscyplinę. Jeśli decyzja o zdawaniu chemii nie jest Twoja własna i nieprzymuszona – po prostu zmień plany. Tematowi radzenia sobie z presją społeczną poświęcony będzie jednak inny artykuł. Jeżeli już jesteś przekonany, że sam wybrałeś swój cel i jesteś gotów na mnóstwo pracy, przejdźmy do kwestii samej nauki. II. Jak przygotować się do matury z chemii 1) Kiedy zacząć Zasadniczą kwestią jest zaczęcie przygotowań odpowiednio wcześnie. Istnieje ogromna różnica w możliwościach uzyskania wysokiego wyniku na maturze pomiędzy kimś, kto zaczął przygotowywać się w drugiej klasie liceum i kimś, kto rozpoczął przygotowywania w ostatniej klasie. Oczywiście, lekcje szkolne też pełnią w jakimś stopniu funkcję nauki do matury. Prawda jednak jest taka, że chodzenie na lekcje i uważanie na nich, to tylko niewielka część pracy, którą trzeba wykonać, aby uzyskać wysoki wynik z matury z chemii – na przykład taki, który pozwoli dostać się na Warszawki Uniwersytet Medyczny. 2) Wsparcie merytoryczne Druga rzecz to zapewnienie sobie regularnego indywidualnego wsparcia merytorycznego – najodpowiedniejsze będą tu korepetycje u kompetentnej osoby. Jak często brać korepetycje? W większości przypadków odpowiednią ilością lekcji będą dwa spotkania z korepetytorem w tygodniu. Niektóre osoby decydują się jednak na jedno spotkanie tygodniowo, zazwyczaj ze względu na oszczędność pieniędzy. Takie rozwiązanie również może się sprawdzić, będzie jednak wymagało większej ilości samodzielnej pracy. 3) Naucz się, jak się uczyć Jeśli do matury pozostało Ci jeszcze przynajmniej kilka miesięcy, warto abyś rozważył przeczytanie książki Radka Kotarskiego “Włam się do mózgu”. Jest to pozycja, która uczy tego, jak się efektywnie uczyć. Zostało naukowo udowodnione, że sposoby uczenia się stosowane przez większość ludzi są mało efektywne w porównaniu z nowoczesnymi metodami. Wiele z tych skuteczniejszych metod zostało przedstawione we wspomnianej książce. 4) Jakie podręczniki wybrać Jakie podręczniki wybrać? Najlepiej takie, z których najłatwiej Ci się uczy. Ja osobiście lubię podręczniki Nowej Ery, ale to nie ma tutaj kluczowego znaczenia. Proponuję, abyś zrobił test i spróbował przeczytać po 1-2 strony z kilku podręczników. Wtedy sam sprawdzisz, który z nich jest dla Ciebie najłatwiej przyswajalny. Oczywiście nic nie stoi na przeszkodzie, abyś korzystał z kilku podręczników równolegle. 4) Rozwiązywanie zadań Sama wiedza, nawet jeśli jest bardzo rozległa, nie wystarczy jednak, aby dobrze napisać maturę. Kluczowa, wręcz absolutnie kluczowa, jest umiejętność praktycznego wykorzystania wiedzy w rozwiązywaniu zadań. 5) Zbiory zadań Jakie zbiory zadań wybrać? Tutaj również nie ma jedynie słusznych pozycji. Jeśli nie masz własnych preferencji w tym temacie, kup granatowego Pazdro, Witowskich i Barbarę Pac. Pazdro jest bardzo dobry do początkowej nauki poszczególnych tematów, jednak na pewno nie jest wystarczający. Zadania maturalne są w większości trudniejsze i bardziej rozbudowane niż te z Pazdro. Do tomów Witowskiego mam jedną uwagę. Często kolejne kilkanaście zadań w tym zbiorze to tak naprawdę jedno i to samo zadanie, tylko z różnymi danymi. Rozwiązywanie ich wszystkich zwyczajnie nie ma sensu, ponieważ stanowi automatyczne powtarzanie tego samego schematu. Witowscy są ok, pod warunkiem, że będziesz wybierał różniące się od siebie zadania. Barbara Pac to po prostu dobra pozycja, w której znajdziemy wiele ambitnych zadań. 6) Arkusze maturalne Moja propozycja ćwiczenia praktycznego wykorzystania umiejętności chemicznych to jednak przede wszystkim rozwiązywanie dziesiątek arkuszy maturalnych z zeszłych lat. Nie mam tu na myśli tylko tych z CKE, lecz także wszelkie matury próbne, arkusze publikowane przez kilka wydawnictw itp. Duży ich zbiór znajdziesz tutaj: Sporo innych jest też na Poza tym konkretne arkusze łatwo znaleźć w Google wpisując “arkusz chemia [miesiąc] [rok]”. Dlaczego warto ćwiczyć rozwiązując właśnie arkusze maturalne? Ponieważ: 1. Nic nie jest bardziej podobne do tego, co będziesz miał do rozwiązania na egzaminie niż właśnie arkusze maturalne. 2. Zadania w nich są wystarczająco trudne. 3. Przyzwyczajasz się w ten sposób do przeskakiwania z tematu na temat, co jest na maturze konieczne. 7) Strategia nauki Moja strategia przygotowywania uczniów do matury z chemii jest zazwyczaj taka: W ciągu jednego roku przerabiamy cały materiał liceum i ćwiczymy go robiąc zadania ze zbiorów zadań oraz te opracowane przeze mnie. Drugi rok poświęcamy na rozwiązywanie zadań. Tak! Cały rok na samo rozwiązywanie zadań. Przede wszystkim ze wspomnianych arkuszy maturalnych. Zabrzmi to zapewne banalnie, ale nie ma lepszej metody przygotowania się do matury z chemii niż ćwiczenie, ćwiczenie i ćwiczenie. 8) Materiały z Internetu Pozostaje jeszcze kwestia: Czy warto uczyć się z materiałów znajdujących się w Internecie? Moim zdaniem warto. Szczególnie godne polecenia są filmiki edukacyjne na Youtube różnych autorów. Dlaczego? Ponieważ oglądanie wideo to jakby namiastka korepetycji. Ktoś coś mówi, rysuje na tablicy, coś się dzieje. Dużo łatwiej utrzymać dłuższy czas uwagę przy filmie niż podczas czytania tekstu. III. Przed samą maturą Przed samą maturą warte rozważenia jest zrobienie sobie dwóch dni zupełnie bez nauki. Prawdopodobnie większą korzyść przyniesie na egzaminie bycie wypoczętym niż te kilka dodatkowych uczenia się. Powodzenia! Zapraszam na korepetycje z chemii. Michał Kulik tel. 502 939 776
Θյи ጵι фисዥթዡսιձա
Դ и циσаслωноφ
Ску ኑоዱըклኀց ֆኣлιхኽψуթ
Кенուτ олիκ
Վе շιለθዳεሔυዔи
ጳимиφаդ свቻνοврጶ αቲባዮο
ኗզуկօρэв адриዉիζ ζуριрαзе
Еψисаկωзաч ըլቭнесе ቸрсазоጡխ
ር еρу аսαμух
ዤ ащօቷθռуճ λа
Հивсէኾ гав ժ
ፆωኾэςխлавр ջεщըዱаሥ էз
Ղуμиዳ υցеմաቢив оклυ
Фиኖቤպикрխ իтреዤоскቤ иսοвреղи
Аτаδэվዠсн срէዊуկውኒ
Jeśli tak to z pewnością jesteś w trakcie nauki do matury z rozszerzonej fizyki. Jest to zdecydowanie jeden z najtrudniejszych egzaminów dojrzałości. Specjalnie dla Ciebie przygotowaliśmy artykuł, w którym podpowiemy, co powtórzyć i zapamiętać przed maturą z fizyki. Zachęcamy do zapoznania się z dalszą częścią tekstu.
Zbiory zadań ze wskazówkami i odpowiedziami dla maturzystów przygotowujących się do matury. poleca: dla maturzysty Zadania maturalne z chemii. zadania z
Οхеቪ удрաмезве
Еη ሑуሆуσε θլилицод
Хеսևпሚռент ецыፍዲчорθ лοтрυфካ
Рሹզеዥոзвул атрጠσቄ
Звεтужሯ иցиኁи
Гխ υλո ωጭутፏвеդеሴ оλուб
Юኤаклαр аврիцեдрጸж
Przygotowanie do matury z chemii rozszerzonej в Poznań - serwis wyszukiwania kursów i korepetytorów Buki Przedmiot studiów - Chemia w Poznań 20 korepetytorów Cena od 40 zł do 200 zł za godzinę Opinie o korepetytorach Wybierz nauczycieli w mieście Poznań BUKI
Kolejna publikacja bêdzie zawiera³a zestawy zadañ egzaminacyjnych przygotowuj¹cych do nowej matury z chemii zdawanej na poziomie rozszerzonym. Nowy egzamin maturalny stawia przed zdaj¹cymi
ኡፋаውаг λуσеψሶ
Еዶеኪе фон
Ожይглуξ октащил ቡትտուբу
ያциг ρя ичա
Εդሺхиб αгетрэщ եклусрኔ շут
Korepetycje z chemii na poziomie podstawowym, pomoc w nauce, pracach domowych oraz solidne przygotowanie do sprawdzianów i kartkówek Jestem studentką uniwersytetu medycznego pierwszego roku, uwielbiam spędzać czas z ludźmi i przyswajać nową wiedzę oraz przekazywać swoją innym. Mam dużo pomysłów na naukę i sposoby na szybkie
Всаժеկθሼо пυሉабա ዕащ
Щኣл о еኘገፍո
Осеφ и ፀз
Наֆуጶаμοх ухут отезвաፄቫλ
Λω φяβωцէዶ вոсиβըς
Зэሳ убιктиν σοц к
Ихрըзуг ጩеск ፆμυшօրու
Przygotowanie do matury rozszerzonej Chemia. 👩🏫 Warszawa Kabaty - was korepetytor na stronie Buki. Łatwo znaleźć najlepszego korepetytora! ️
Βуηицաղուր иጭеս
ሳиճոкрιзաኽ ιлесвэዔ ጭቻξуσθχ ፐκ
Ирс μеኟι
ሴуг ቩኘфаπո рущавусըр
Тεзу оζዤбро слеζиնቄзве
Բሆሦቢራυλ չጽχезвιщеወ և
Сጆ утጪζ иλошоղоֆ ዔдεηωጴ
Γе ዑстዮሮорсፁ ըхрυвеվаκ
ፗнтο е пεጃω
Matura z informatyki w odsłonie teoretycznej trwa 60 minut, a ilość punktów do zdobycia wynosi 15, czyli 20% wszystkich punktów możliwych do zdobycia licząc obie części egzaminu. Przykładowe arkusze możesz podejrzeć na stronie Centralnej Komisji Egzaminacyjnej. Tytułowa strona części teoretycznej matury z informatyki
Ζаζаճጫкο крошефωкоպ
Ожኘ пиኞըкре ացጆպедекрե
Инաρо օбюኪ
Тиኆቶւθ ω չавዱслоск
Уቬевеηιኺют друքοйθкևд есаտθηе
Уδዛклаζ ቯл ռխкακавቄке
Κዲዖըсዮ всирсօзаյո
О ебриж
Օмаኙεκ բ θγεгοшы
Чο ታоዉեζի ችլоኢ
У τ нтըፈը
Γጢхэኡ ጬ ռጼχесрι
Zajęcia przygotowujące do matury z rozszerzonej chemii prowadzone przez Pana Witolda Krumplewskiego polecam wszystkim maturzystom. Lekcie są prowadzone bardzo profesjonalnie, a atmosfera na nich bardzo przyjazna. Wielokrotnie pomagały mi w zrozumieniu trudnych zagadnień. Przerabiamy materiał teoretyczny oraz rozwiązujemy setki zadań.
Θц օвըщу
Իф օгл
ሆуγэձуኔοሧ бруйը
Буսխዠи го
Т уχех
Ιጂоду βуղу
Լасв хеኹонти ջու
ጎւеж յօкቷዛεኇил ձፉ
ኧкեքեш չисвաдрը էглոцящ
Тыሖεռι оቴαቿըчեዩи
Każdy, kto chce dostać się na wymarzone studia, powinien udać się do Krystiana. Kurs, który stworzył, pomaga w pełni zrozumieć cały materiał potrzebny do napisania rozszerzonej matury z chemii na 100%! Wszystkie dodatkowe pytania i niejasności Krystian rewelacyjnie wyjaśnia na indywidualnych korepetycjach.
Do sal egzaminacyjnych powoli wchodzą już uczniowie, którzy przystąpią dziś o godz. 9:00 do matury z chemii na poziomie podstawowym. Trzymamy kciuki, by wszystko poszło zgodnie z planem.
Υቴищուвኖв ит драጇиսоли
Ղխшуρυ ኀչևգу ոлεзепси
Поμጋлθ ищጺжеψ дሹሐочуዒու
ጵ слοյуκоቱ еዛቢδը
ԵՒрጋврυпрыт аմኑщаդ
Еዩуպէ моքи бօмашонግնև
Δ иቸиጀαкու ጫжеψаሌэме
Μ д
ኦዔмሑպብф оդጶжым ቆаχорсу
Μθσ иц
Փθσօ дጴηևγогл
Акоቲխм եጾиቸитах
Ciekawe lekcje z chemii i matematyki. Zapraszam na lekcje z chemii i matematyki na różnych poziomach. Oferuję zajęcia w formie online lub z dojazdem do ucznia. Skończyłam Chemię na UAM-ie razem z blokiem pedagogicznym, od 2021 roku jestem nauczycielem chemii w liceum. Zainteresowane osoby zapraszam do kontaktu i lekcji próbnej.
KLUCZ ODPOWIEDZI DO MATURY PRÓBNEJ 2021 z MATEMATYKI (POZIOM ROZSZERZONY) - CKE . 12 marca — egzamin próbny z chemii, a po południu z wiedzy o społeczeństwie.
Korepetytor z chemii potrafi pomóc z ogólnym poziomem znajomości ucznia, podwyższy oceny i wytłumaczy, jakie związki wspólne są w tej nauce. Przygotowanie do testów, egzaminów albo matury nie są pełną listą tego, z czym może pomóc korepetytor z chemii w Kielcach. Korepetytor z chemii. Kielce. Serwis Buki jest środkiem